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Abstract. Software for embedded systems is becoming ever more complex. This
requires a radical re-thinking in the embedded software development community,
comparable to the Assembler-to-C transition years ago. Object-oriented software
development is a proven solution for taming software complexity. While, at least to a
certain degree, object-oriented principles can also be applied to C programming, a
programming language with inherent support for object-oriented programming brings
many advantages. But support for object-oriented programming is just one feature of
C++. C++ has many features that make writing reliable and robust code easier than
in C. This paper introduces two ANSI C++ techniques that can be used to write more
reliable and robust code for embedded systems. These are the RAII (Resource
Acquisition Is Initialization) idiom for resource management and exceptions for error
handling. The paper is targeted at developers having a basic knowledge of C++, and
who might consider moving to C++ for their next project.

1 Introduction
Software for embedded systems is becoming ever more complex. This requires a radical re-
thinking in the embedded software development community, comparable to the Assembler-
to-C transition years ago. Even in many smaller embedded system development projects, the
days of the one-engineer “software team” are counted, if not all over. Object-oriented
software development is a proven solution for taming software complexity. While, at least to
a certain degree, object-oriented principles can also be applied to C programming, a
programming language with inherent support for object-oriented programming brings many
advantages. This is comparable to the fact that structured programming can somehow be
done in Assembly language. However, doing structured programming in a high-level
language like C is much more efficient. But support for object-oriented programming is just
one feature of C++. C++ has many features that make writing reliable and robust code easier
than in C.

C++ is thus slowly but steadily replacing C as the programming language of choice for
embedded or device software development. While C++ (or at least some of its features) has
often (falsely1) been considered prohibitively resource intensive for embedded devices,
especially with today's available powerful embedded hardware and mature compiler and
build system technology, this is certainly no longer the case. Under certain circumstances the
code generated by a state-of-the-art C++ compiler may even be more efficient than the code
produced by a C compiler. What makes C++ unique among programming languages is that it
                                                  
1 There seem to be two causes for this: a missing understanding about the internals of C++, and bad
experiences with early compilers, which really produced inefficient (or even wrong) code in some
cases.



covers the full range from low-level programming (interrupt service routines, direct hardware
access) to high-level programming (classes, generic programming) in one language, without
the need to connect both ends via awkward artificial interfacing mechanisms. With the
software for embedded systems becoming ever more sophisticated and complex, the high
level abstractions of C++ are certainly needed in addition to its suitability for low-level
programming.

This paper introduces two ANSI C++ [1] techniques that can be used to write more reliable
and robust code for embedded systems. A special focus will be on the performance
implications of certain language features, by taking a detailed look at what happens “behind
the scenes”. The topics that will be covered include:

• The RAII (Resource Acquisition Is Initialization) paradigm for automatic
resource management. RAII is a powerful paradigm that frees the developer from
certain complexities of manual resource management. Prominent examples of RAII
are scoped locks and “smart” pointers. A scoped lock is a class that acquires a mutex
at the beginning of a block and automatically releases it when the block is left, no
matter how. Smart pointers help programmers manage the lifetime of objects on the
heap, by automatically deleting an object and releasing its memory when it is no
longer referenced.

• C++ exceptions for better error handling. Proper error handling is hard to do in C.
C++ exceptions provide a powerful facility for reliable error handling at the cost of
some minimal overhead. However, unless the code using exceptions is exception-
safe, exceptions may be the cause of resource leaks, which are fatal for embedded
systems. The second part of this paper discusses the three levels of exception-safety
in C++ code, and how to achieve them.

2 The C++ Object Lifecycle
In C++, every class has one or more constructors, as well as exactly one destructor. The
C++ compiler automatically takes care that for every object that is constructed, no matter
whether on the heap, on the stack, or statically, a constructor is called. Furthermore it
ensures that for every object that is destroyed, the object’s destructor is called. Even a class
(or struct) for which the programmer has not implemented a constructor or destructor will
have one. In this case, the compiler automatically implements the missing constructor or
destructor2. However, especially for classes containing pointer member variables, the
constructor and destructor generated by the compiler might not do the right thing. Therefore,
it’s a good practice to always provide a constructor and destructor, even if their
implementation might be empty.

There are actually two constructors that are required for every class. The first one is the
default constructor, a constructor taking no arguments. The second one is the copy
constructor, which is used for constructing an object by copying another argument.

C++ also supports object assignment. For this to work, a class must implement the
assignment operator. Again, if a class does not implement an assignment operator, the C++
compiler will provide one (which, however, might not do the right thing, especially if the class
has pointer member variables).

In C++, one can actually distinguish two kinds of classes. Classes that support value
semantics, and classes that do not. Value semantics means that a class supports a default
constructor, a copy constructor and an assignment operator, and optionally some or all
relational operators (==, !=, <, <=, >, >=). These classes can be used in the same way as the
build-in data types of C++. An example for such a class is the string class in the standard

                                                  
2 In the trivial case, the constructor might be empty and not do anything, and no additional code (and
thus no overhead) will result.



library (std::string). Classes that do not support value semantics do not have a copy
constructor and an assignment operator. In such a case, to prevent the compiler from
generating them, they are declared as private in the class definition.

A class supporting value semantics basically looks like this:
class Value
{
public:
    Value();
        // default constructor

    Value(const Value& value);
        // copy constructor

    ~Value();
        // destructor

    Value& operator = (const Value& value);
        // assignment operator

    bool operator == (const Value& value);
    bool operator != (const Value& value);

    // ...

private:
    // ...
};

A class not supporting value semantics in contrast looks like this:
class NonValue
{
public:
    NonValue();
        // default constructor

    NonValue(int someArg, bool someOtherArg);
        // construct from some other values/objects

    ~NonValue();
        // destructor

private:
    NonValue(const NonValue&);
    NonValue& operator = (const NonValue&);

};

A private copy constructor and a private assignment operator are a sign to the compiler that
it does not have to implement them, and, in fact, nobody is going to implement them as they
are never going to be called.

Especially if the standard template library (STL) is used in a C++ project, it makes sense to
add another member function (as well as a freestanding function) to each class supporting
value semantics. For efficiency, many algorithms in the STL use a swap operation to
exchange the values of two objects. For objects that do not support a swap operation
themselves, the C++ standard library provides a default implementation:

// namespace std
template <typename C>
void swap(C& c1, C& c2)
{



    C temp(c1);
    c1 = c2;
    c2 = temp;
}

This works for every class supporting value semantics (copy construction and assignment
operator), although at some cost. For many classes, a swap operation can be implemented
much more efficiently, not involving the (potentially costly) construction of a temporary object.

As an example, we look at the implementation of a very primitive string class. To keep the
example short, we only show the implementation of the copy constructor and the assignment
operator.

class SimpleString
{
public:
    SimpleString();
        // creates an empty string

    SimpleString(const char* str);
        // creates a SimpleString from a C string.

    SimpleString(const SimpleString& str);
        // copies another string

    ~SimpleString();
        // destroys the string

    SimpleString& operator = (const SimpleString& other);
        // assignment operator

    std::size_t length() const;
        // returns the length of the string

private:
    char*       _pData;
    std::size_t _length;
};

SimpleString::SimpleString(const SimpleString& str):
    _pData(new char[str._length]),
    _length(str._length)
{
    memcpy(_pData, str._pData, _length);
}

SimpleString& SimpleString::operator = (const SimpleString& str)
{
    if (&str != this)
    {
        delete _pData;
        _length = str._length;
        _pData  = new char[_length];
        memcpy(_pData, str._pData, _length);
    }
    return *this;
}

Now, if we want to exchange the value of two SimpleString  objects, the template
instantiation of the standard swap function for SimpleString becomes:

void swap(SimpleString& s1, SimpleString& s2)



{
    SimpleString tmp(s1);
    s1 = s2;
    s2 = tmp;
}

This leads to the creation of a temporary string object, which all the necessary overhead like
allocation of memory on the heap, etc. To make things more efficient, what we have to do is
to implement a swap operation for SimpleString:

void SimpleString::swap(SimpleString& str)
{
    using std::swap;
    swap(_pData, str._pData);
    swap(_length, str._length);
}

We also have to provide a freestanding swap function for SimpleString:
void swap(SimpleString& s1, SimpleString& s2)
{
    s1.swap(s2);
}

However, for use with the standard library, the freestanding swap should rather be
implemented as a specialization of the std::swap template:3

namespace std
{
    template <>
    void swap<SimpleString>(SimpleString& s1, SimpleString& s2)
    {
        s1.swap(s2);
    }
}

As we have seen, the implementation of the assignment operator is surprisingly complicated:
SimpleString& SimpleString::operator = (const SimpleString& str)
{
    if (&str != this)
    {
        delete _pData;
        _length = str._length;
        _pData  = new char[_length];
        memcpy(_pData, str._pData, _length);
    }
    return *this;
}

First, we have to guard against self assignment. Then we have to get rid of the old data,
allocate space for the new data, and copy the data.

Using our swap implementation, we can come up with a much simpler implementation of the
assignment operator:

SimpleString& SimpleString::operator = (const SimpleString& str)
{
    SimpleString tmp(str);
    swap(tmp);
    return *this;

                                                  
3 This can only be done for non-template classes, as C++ does not allow template specialization for
another template. In the case of a template class, a freestanding swap function must be implemented.
Argument-dependent lookup ensures that the correct swap function will be called. For more
information, see [2].



}

We no longer have to guard against self assignment, and this new implementation is actually
a lot more robust (exception safe) than the original one.

In our original implementation, we use the new operator to allocate memory for the copied
data, after the old data has already been deleted. Now, if we run out of memory, the new
operator will throw an exception, and we’ll end up with a corrupted SimpleString object (the
new length has already been assigned, but _pData still points to freed memory). Of course,
we could fix this by allocating the new memory before releasing the old (this is left as an
exercise for the reader), but the implementation using the swap operation does this in a
much more elegant way. It is also a whole lot shorter, and as every developer knows, fewer
lines of code mean fewer bugs.

Now one might argue that the new implementation using swap is not as efficient as the old
one. That’s not necessarily so. The only case where the new implementation is less efficient
than the old one is a self assignment. Self assignment, however, is very rare. Instead, in the
normal case, we got rid of a conditional branch (the test for self assignment), which will
positively affect performance by avoiding a possible pipeline stall in the processor.

3 Resource Acquisition Is Initialization
The C++ compiler takes care that constructors and destructors of objects are always
appropriately called. We can use this to our advantage, even in not so obvious ways.

Let’s consider the following example. In multithreaded code, access to a shared resource
has to take place inside a critical section. A critical section is a block of code guarded by a
synchronization primitive (a mutex or semaphore) that ensures that at most one thread at a
time can execute the block. Assuming we have a mutex4 class with the following interface:

class Mutex
{
public:
    void lock();
        // acquire the mutex; wait if another thread holds the mutex

    void unlock();
        // release the mutex

    // ...
};

a critical section can be written as follows:
static Mutex mutex;
mutex.lock();
// code in critical section
// access and manipulate shared resource
mutex.unlock();

This code might seem fine at first. However, the code in the critical section might under
certain circumstances throw an exception. In this case, the mutex will never be released, and
a later deadlock is guaranteed. Or some developer might decide to optimize some code path
inside the critical section and adds a return or break statement which also prevents
unlock()from being called.

                                                  
4 A mutex has two operations. The first operation is usually called lock or acquire, and will acquire
ownership of the mutex. A mutex can have at most one owner, so if there is already another thread
owning the mutex, the operation will block the thread until the mutex becomes available. The second
operation, unlock or release, will give up ownership of the mutex, and allow another thread waiting for
the mutex to continue execution.



Against the first case, we can defend our code using a try ... catch block:
static Mutex mutex;
mutex.lock();
try
{
    // code in critical section
    mutex.unlock();
}
catch (...)
{
    mutex.unlock();
    throw;
}

However, this is error prone (it is easy to forget one call to unlock()), unelegant, and it does
defend us against a return or break in the critical section.

Using our knowledge about constructors and destructors, we can come up with a far better
way to implement a critical section:

class ScopedLock
{
public:
    ScopedLock(Mutex& mutex):
        _mutex(mutex)
    {
        _mutex.lock();
    }

    ~ScopedLock()
    {
        _mutex.unlock();
    }

private:
    Mutex& _mutex;

    ScopedLock();
    ScopedLock(const ScopedLock& lock);
    ScopedLock& operator = (const ScopedLock& lock);
};

We create a new class ScopedLock that just consists of a constructor and a destructor, and
stores a reference to a Mutex object. In the constructor, the Mutex is locked, and in the
destructor the Mutex object is unlocked.

We use the new ScopedLock class as follows:
static Mutex mutex;
{
    ScopedLock lock(mutex);
    // code in critical section
}

Now, no matter how we exit the block enclosing the critical section – normally, via an
exception, or a return or break statement, or even a goto, the mutex will always be
unlocked, since the compiler ensures that the destructor will be called for every automatic
variable when leaving its scope.

What we have done in our ScopedLock class is referred to as the Resource Acquisition Is
Initialization idiom (or RAII, for short). The acquisition of a resource (in our case, a mutex) is
bound to the construction (initialization) of an object, whereas the release of the resource is
bound to the destruction of the object. For an automatic variable (stored on the stack), the



C++ compiler guarantees us that the destructor is called when leaving its scope, no matter
how.

Our ScopedLock class has no negative effect on the performance of the resulting program.
The C++ compiler’s ability to inline the code of the constructor and the destructor means that
there is no actual function call to the constructor or destructor taking place in the code.
Instead, the code of the constructor, or destructor, respectively, is directly placed (inlined) at
the call site. In fact, the resulting code will be equivalent to the one using a try ... catch
block, but probably more efficient, as the compiler’s optimizer can do a better job.

4 Smart Pointers
Another area where RAII can be put to good use is memory management. Getting the
management of memory on the heap right is on of the hardest things to do in both C and
C++. But while C leaves the developer out in the cold in this regard, C++ can give you almost
the same comfort as a garbage-collected language like Java, with the additional bonus of
determinism. Consider the following implementation of a trivial “smart” pointer:

template <typename C>
class AutoPtr
{
public:
    AutoPtr(): _ptr(0)
    {
    }

    AutoPtr(C* ptr): _ptr(ptr)
    {
    }

    ~AutoPtr()
    {
        delete ptr;
    }

    C* operator -> ()
    {
        return _ptr;
    }

private:
    C* _ptr;

    AutoPtr(const AutoPtr&);
    AutoPtr& operator = (const AutoPtr&);
};

We can use this AutoPtr class in the following way:
void testAutoPtr()
{
    AutoPtr<std::string> pString(new std::string(“Hello, world!”));
    std::cout << pString->length() << std::endl;
}

In this example, the destructor of the AutoPtr ensures that the std::string object we have
allocated on the heap will be deleted when we return from the function, no matter in which
way. Note that how overloading the arrow (->) operator makes the use of AutoPtr fully
transparent – we can use AutoPtr almost like a plain pointer.



An “industrial strength” AutoPtr class will require a bit more work, though. We will at least
have to handle assignments and copying (the hardest part), overload the dereferencing
operator (*), and possibly implement the relational operators.

The main obstacle when implementing copy and assignment for a smart pointer is finding out
who is responsible for deleting the object on the heap. “The last one switches off the light”
seems like a good strategy, but how can this be implemented? We need to keep track of the
number of smart pointers referencing a single object, using a reference counter. Whenever a
smart pointer gets a reference to the object, the reference counter is incremented. Whenever
a smart pointer releases its reference to the object (because another object is assigned, or
because the smart pointer is destroyed), the reference counter is decremented. When the
reference counter reaches zero, the object on the heap is deleted.

There are two strategies for implementing such a smart pointer. The first strategy is to make
the reference count a part of the object to be managed by the smart pointer, as shown in
Figure 1. This is easier to implement, but restricts the smart pointer to objects providing a
reference counter (and member functions to manage it).

Figure 1: Smart pointer storing the reference counter in the object.

The second strategy is to store the reference count separately from the object, as shown in
Figure 2.

Figure 2: Smart pointer storing the reference counter separately from the object.

A smart pointer using a separate reference counter is commonly referred to as a shared
pointer – pointers share ownership of an object, and the last one deletes it.

A trivial implementation of such a shared pointer could look like this:
template <typename C>
class SharedPtr
{
public:
    SharedPtr():
        _ptr(0),
        _pRC(new int(1))
    {
    }



    SharedPtr(C* ptr):
        _ptr(ptr),
        _pRC(new int(1))
    {
    }

    SharedPtr(const SharedPtr& other):
        _ptr(other._ptr),
        _pRC(other._pRC)
    {
        ++*_pRC;
    }

    ~SharedPtr()
    {
        if (--*_pRC == 0)
        {
            delete _ptr;
            delete _pRC;
        }
    }

    void swap(SharedPtr& other)
    {
        using std::swap;
        swap(_ptr, other._ptr);
        swap(_pRC, other._pRC);
    }

    SharedPtr& operator = (const SharedPtr& other)
    {
        SharedPtr tmp(other);
        swap(tmp);
        return *this;
    }

    SharedPtr& operator = (C* ptr)
    {
        SharedPtr tmp(ptr);
        swap(tmp);
        return *this;
    }

    C* operator -> ()
    {
        return _ptr;
    }

    // ...

private:
    C*   _ptr;
    int* _pRC;
};

This example implementation shows how a shared pointer basically works. A real world
implementation would be more complicated. For example, manipulation of the reference
counter must be done in a thread safe way, and assignment of different, but related
instantiations of SharedPtr must be handled (e.g., assignment of SharedPtr<D> to
SharedPtr<B>, where D is a subclass of B). However, only few programmers will probably
ever have to implement such a SharedPtr themselves, as there are already a lot of high-
quality implementations available in open source libraries, for example POCO [3] and Boost



[4]. Also, the next revision of the C++ standard will include a shared pointer as part of the
C++ standard library.

5 Exceptions
Exceptions are C++’s mechanism for error handling. In C, error handling is done in one of
two ways. Either a global (or thread-local) variable is used for storing an error number or
error flag, or a function communicates an error to the caller via its return value (or an output
parameter). A combination of both is also possible, as it is done by the C standard library.

Error handling in C is a constant pain. Basically, the result of every function call has to be
checked, leading to endless if/else chains5. Cleaning up the state of data structures if an
error occurs in the middle of an operation is hard to get right. To make things even more
complicated, testing all possible error scenarios and the resulting code paths is almost
impossible.

All of this can be avoided in C++, using exceptions for error handling. Error handling code (in
the form of try ... catch blocks) can be concentrated on a few places in a program, and
with clever programming (RAII), the compiler takes care of cleaning up the mess after an
error occurs.

There are, however, some pitfalls when using exceptions. First, an exception in the wrong
place can leave objects or data structures in an invalid state, causing later trouble. Second,
exceptions have a certain overhead (both memory and run-time) that has to be taken into
account.

The first issue can be dealt with by writing exception safe code. We can distinguish three
levels of exception safety that an operation can guarantee [5]:

• the basic guarantee: an operation always leaves objects in a valid state and does
not leak resources.

• the strong guarantee: in addition to the basic guarantee, the operation either
succeeds or leaves all objects unchanged.

• the nothrow guarantee: the operation never throws an exception.

Using the RAII idiom, the basic guarantee is relatively easy to implement, and sufficient for
most cases. The strong guarantee can be quite hard to implement, but nevertheless may be
required for certain operations (for example, the push_back  member function of a
std::vector either succeeds, or leaves the vector unchanged). Examples where the
nothrow guarantee is used are simple swap implementations, or the pop_back operation of
std::vector. Also, while theoretically possible, a destructor of an object should never throw
an exception.6

The use of exceptions results in a certain overhead, both in memory and run-time. This is,
however, a minimal price to pay for the many advantages that exceptions can deliver [6].
Nevertheless, exceptions cannot be used under certain circumstances. These are interrupt
service routines, and real-time code7.

                                                  
5 In fact, error handling in C is such a pain, that in certain cases a goto statement can actually make
the code clearer – this is the only acceptable use for the goto statement in C.
6 Destructors are called during stack unwinding when an exception is being handled. Throwing an
exception, while another exception is currently being handled will result in the program being
terminated.
7 It may be possible to use exceptions in real-time code, but this requires a detailed knowledge of the
exception implementation of the used C++ compiler (which may not be available), as well as extensive
time analysis of all possible code paths.



6 Conclusion
This paper has shown that C++ offers far more than object-oriented programming. Two
techniques have been shown that make writing robust software in C++ a lot easier than in C.
RAII and exceptions are two techniques that perfectly complement each other.
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