
Cross-Platform Issues With Floating-Point Arithmetics in C++

Günter Obiltschnig, Applied Informatics Software Engineering GmbH
guenter.obiltschnig@appinf.com

ACCU Conference 2006

Abstract. The C++ standard does not specify a binary representation for the
floating-point types float, double and long double. Although not required by
the standard, the implementation of floating point arithmetic used by most
C++ compilers conforms to a standard, IEEE 754-1985, at least for types float
and double. This is directly related to the fact that the floating point units of
modern CPUs also support this standard. The IEEE 754 standard specifies the
binary format for floating point numbers, as well as the semantics for floating
point operations. Nevertheless, the degree to which the various compilers
implement all the features of IEEE 754 varies. This creates various pitfalls for
anyone writing portable floating-point code in C++. These issues, and ways
how to work around them, are the topic of this paper.

1 Introduction
As with integer types, the C++ standard does not specify a storage size and binary
representation for floating-point types. The standard specifies three floating point types:
float, double and long double. Type double must provide at least as much precision as
float, and long double must provide at least as much precision as double. Furthermore, the
set of values of the type float must be a subset of the values of type double and the set of
values of the type double must be a subset of the values of type long double.

2 IEEE 754 Floating Point Representation
Although not required by the standard, the implementation of floating point arithmetic used
by most C++ compilers conforms to a standard, IEEE 754-1985 [1], at least for types float
and double1. This is directly related to the fact that the floating point units of modern CPUs
also support this standard. Exceptions are VAX and certain Cray machines, which use
proprietary formats. The IEEE 754 standard specifies the binary format for floating point
numbers, as well as the semantics for floating point operations. The standard is currently
(Spring 2006) undergoing a revision.
Byte order also applies to floating point types, so on a big-endian machine, the constant
π = 3.1415926... (or, strictly speaking, an approximation of it) as a float value, will be stored

1 On some compilers, support for IEEE 754 floating point arithmetic must be explicitly turned
on with a compiler option.

2

as 0x40 0x49 0x0F 0xDB (starting from the lowest address), while on a little-endian machine
it will be stored as 0xDB 0x0F 0x49 0x40. Of all three floating point types, long double is
the least portable. Some systems do not support long double directly; on these systems, it is
the same size as a double. Also, on Linux IA32 platforms, long double uses the native Intel
80-bit floating point format. On most Unix platforms, long double is 128-bit, often
implemented in software. So, byte order issues aside, float and double values usually can be
exchanged in binary format between platforms; long double values can not. Table 1 gives
an overview of the three floating point types.

C++ Type Precision Size in bits Fraction bits Exponent bits
float single 32 23 8
double double 64 52 11
long double quadruple/

double
extended

128/80 112/64 15

Table 1: Floating point types and their sizes (sign bit not shown)

An IEEE floating-point number consists of three parts: the sign bit, the mantissa (stored as
fraction) and the exponent. So, the actual value of a floating point number is

Value =

€

Sign ⋅ Mantissa ⋅102Exponent

Notice the difference between mantissa and fraction. An IEEE floating point number is
normalized such that the most significant bit of the mantissa is always one, thus it is not
necessary to store it (an exception to this are the so-called denormal or subnormal numbers).
This means that for float values, the mantissa is actually 24 bits. For example, the binary
floating point number 1.11101000010111111000111*10-01111110 (which, in decimal, is
2.24*10-38) will be stored as

Sign Exponent Fraction
0 00000001 11101000010111111000111

In this example, although the binary exponent is –01111110, which is –126 in decimal, it is
stored as 00000001. The reason for this is that the exponent is not encoded in two’s
complement, as one would expect. A fixed offset, called a bias, is added to the exponent, with
the result that the biased exponent is always a positive integer. For single precision floating
point numbers, the bias is 127; for double precision numbers it is 1023. Figure 1-3 shows the
storage layout of IEEE floating point numbers for 32-bit single and 64-bit double precision
values.

Figure 1: Storage layout for IEEE single precision and double precision floating point values

On some platforms, most notably IA32, the floating point hardware supports only one format
(in case of IA32, this is the 80-bit double extended format). Prior to an arithmetic operation,
all operands in a different format must be converted to the native format, and eventually the

3

result must be converted back. This gives the opportunity for a whole new class of nasty
surprises, caused by the loss of precision when intermediate results are stored in memory (and
thus need to be rounded) for later use.

3 IEEE 754 Special Features
The IEEE 754 standard has some special features, and they are a major reason for problems
when porting floating point code between platforms. The features are discussed in the
following sections.

3.1 NaN (Not a Number)
IEEE 754 requires that computations continue, even in case of an exceptional condition, such
as dividing by zero or taking the square root of a negative number. The result of taking the
square root of a negative number is a NaN (Not a Number). NaN is represented by a bit
pattern that does not yield a valid number. The exponent is all ones and the fraction is non-
zero. There are actually two flavors of NaN. QNaN (quiet NaN) has the most significant
fraction bit set and is the result of an operation when the result is not mathematically defined
(indeterminate). SNaN (signaling NaN) has the most significant fraction bit cleared and is
used to signal an exceptional condition or invalid operation. Additionally, a NaN can be
positive or negative. Some implementations do not distinguish between QNaN and SNaN.
Furthermore, some implementations always generate negative NaNs, independent of the sign
of the operands. Since the bit pattern for the fraction part of a NaN is not exactly specified
(other than that it must be non-zero, and for the most significant bit), there is a whole family
of NaN values. Implementations are free to use the fraction bits for whatever they like.
There is no straightforward portable way to check whether a given value is NaN. Some
platforms, as part of the C library, provide the functions isnan() and isnanf(), but these are
not standardized. The C++ standard library specifies a class numeric_limits<>, with
specializations for float, double and long double. These classes define the static methods
quiet_NaN(), signaling_NaN(), has_quiet_NaN() and has_signaling_NaN(), but these
cannot be used for that purpose. Since there is no single value for NaN, you cannot just
compare a value with the result of quiet_NaN() for equality. The result of every arithmetic
operation involving at least one NaN is again a NaN. The comparison of a NaN with another
value, including another NaN, always yields false. So, one possible workaround would be to
check if a value is not equal to itself (x != x), which, in case of a NaN, yields true.
The result of a conversion of a NaN to a string, necessary for output to the console, is not
standardized and varies between platforms. Similarly, converting a NaN to an integer yields
an undefined result.

3.2 Infinity
The result of a divide by zero is infinity. An exception is 0/0, which yields NaN. Similar to
NaN, infinity is represented by a bit pattern that does not stand for an ordinary number. The
exponent is all ones and the fraction is zero. Infinity can be positive or negative. Testing for
positive or negative infinity is straightforward, as the numeric_limits<> class provides the
static method infinity(), which returns the value representing positive infinity, which you
can use for comparison.
As with NaN, the result of a conversion of infinity to a string is not standardized and varies
between platforms. The result of converting infinity to an integer is undefined as well. Table 2
shows the results of various operations involving infinity.

4

Operation Result
x / ±Infinity 0

±Infinity * ±Infinity ±Infinity

x / 0 (for x != 0) ±Infinity
±0 / ±0 NaN

Infinity + Infinity Infinity

Infinity - Infinity NaN

±Infinity / ±Infinity NaN
±Infinity * 0 NaN

Table 2: Infinity Operations

3.3 Signed Zero
Zero is represented by a bit pattern, in which both the exponent and the fraction are all zeros.
There is still the sign bit, so zero can be positive or negative. Although +0 and –0 are distinct
numbers, they compare as equal.

3.4 Gradual underflow and denormal numbers
If the result of an operation lies between zero and the smallest number that can be represented
by a normalized floating point value, you are in trouble. You know that the value is not zero,
nevertheless you are forced to treat it as zero. This leads to the undesirable situation that
x – y == 0 for x != y. In a longer operation, this can lead to a significant error, or even to
an unexpected divide by zero. To account for these cases, IEEE 754 defines a concept called
gradual underflow. If a number has a zero exponent, its exponent is not required to be
normalized and the most significant bit of the exponent is considered zero (remember that this
bit is not actually stored). Such denormal (or subnormal) values have a lower precision than
normalized numbers, but this is still better than treating them as zero.
The smaller a denormal number, the smaller will be its precision. Eventually, a denormal
number will degenerate to zero. Denormalized numbers are essential for guaranteeing that if
two numbers are different, then the result of subtracting one from the other is not zero. To
make things more clear, here is an example that shows how denormal numbers work. Say you
have two 32-bit floating point values, 8.97*10-38 and 8.95*10-38. When you subtract the
second number from the first, the result is 2.0*10-40 (or 1.99999*10-40), a number that cannot
be represented by a normalized 32 bit floating point value. Table 3 shows how these values
are represented internally and how those representations must be interpreted. You can see that
the result is a denormal number, because its exponent is zero.

Decimal Internal Interpret as (binary)
8.97*10-38 0 00000011 11101000010111111000111 1.11101000010111111000111*10^11

8.95*10-38 0 00000011 11100111010010001100110 1.11100111010010001100110*10^11

1.99999*10-40 0 00000000 00000100010110110000100 0.00000100010110110000100*10^1

Table 3: Representation of denormal numbers

Denormal numbers are hard to implement, especially in hardware, so not all systems
implement them. This is one of the reasons why the same calculation can lead to different
results on different systems even if both systems use IEEE arithmetic.

5

3.5 Rounding modes, exceptions and flags
Rounding occurs whenever the result of an operation cannot be exactly represented as a
floating point number. IEEE 745 specifies four rounding modes:

• rounding towards nearest,
• rounding towards zero,
• rounding towards positive infinity, and
• rounding towards negative infinity.

In C++, there is no standardized interface to set or query the current rounding mode, and
many platforms have no such interface at all at library level.
Whenever an exceptional condition occurs during a computation, the default behavior is to
deliver a special result (NaN, infinity) and continue with the computation. This may not
always be the best alternative, so the IEEE standard also specifies a trap mechanism, where an
exception will lead to the invocation of a trap handler. Additionally, exceptions are also
reported by setting the values global status flags accordingly. The standard defines five
exception classes:

• overflow,
• underflow,
• division by zero,
• invalid operation, and
• inexact.

However, in C++ again there is no standardized way to set trap handlers or test the status
flags. In contrast, the C99 standard defines functions for working with rounding modes,
exceptions and flags (called the floating point environment).

4 Issues not addressed by IEEE 754
Neither the IEEE 754 nor the C++ standard specify how transcendental functions like sin(),
cos(), exp(), etc. have to be implemented. Therefore, for the same arguments, the results
that these functions return on various platforms might not be exactly the same. This is another
reason for getting non-identical results for the same expression on different platforms. The
standard also does not specify how the conversion from decimal floating point values to their
binary representation and vice-versa must be implemented. Especially the string
representations of NaN and infinity differ between platforms. Be also cautious when using the
pow() function. On some systems, it will only work for positive and integral exponents.
Instead of z = pow(x, y), use the following when an exponent is negative or non-integral:

z = exp(y * log(x))

5 IEEE 754 API Support
IEEE 754 does not specify an API for floating-point operations. Therefore, writing cross-
platform floating-point code that relies on the special IEEE 754 features can become
problematic. Table 4 gives an overview of the API provided by different platforms.

6

C99 Windows Solaris
Headers <fenv.h>

<math.h>
<float.h>
<math.h>

<ieeefp.h>
<math.h>

Rounding Modes
downward FE_DOWNWARD RC_DOWN FP_RM

upward FE_UPWARD RC_UP FP_RP

to nearest FE_TONEAREST RC_NEAR FP_RN

toward zero FE_TOWARDZERO RC_CHOP FP_RZ

Flags
divide by zero FE_DIVBYZERO SW_ZERODIVIDE FP_X_DZ

inexact FE_INEXACT SW_INEXACT FP_X_IMP

overflow FE_OVERFLOW SW_OVERFLOW FP_X_OFL

underflow FE_UNDERFLOW SW_UNDERFLOW FP_X_UFL

invalid FE_INVALID SW_INVALID FP_X_INV

Operations
clear flags feclearexcept() _clearfp() fpsetsticky()

check flag fetestexcept() _statusfp() fpgetsticky()

set rounding mode fesetround() _controlfp() fpsetround()

get rounding mode fegetround() _controlfp() fpgetround()

test for infinite isinf() _finite() fpclass()

test for NaN isnan() _isnan() isnanf()
isnan()

copy sign copysignf()
copysign()

_copysign() copysign()

save environment fegetenv() _controlfp() fpsetround()
fpsetmask()

restore environment fesetenv() _controlfp() fpgetround()
fpgetmask()

Table 4: Comparison of floating point APIs

6 Conclusions
Although most modern platforms support IEEE 754 floating point arithmetics, writing cross-
platform floating point code is not easy. In this paper, the issues that must be taken into
account when writing portable floating point code have been discussed and the APIs provided
by different platforms have been compared. To summarize,

• ordinary float and double values can be exchanged in binary form between systems
that implement IEEE 754, long double values cannot;

• NaN and denormals are problematic;
• byte order must be taken into account;
• the same code may produce slightly different results on different systems;
• you have to implement your own portable API for working with some IEEE 754

features.

7

References
[1] Kahan, W., “Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-

Point Arithmetic”, University of California Berkeley, 1996.

