
The POCO C++ Libraries
for Device Software Development

White Paper
Version 2.0

Purpose of This Document

This document gives an overview of the Applied Informatics POCO C++ Libraries, a
collection of class libraries and frameworks that greatly simplifies the development of
network-centric and platform-independent applications in C++.

The document is targeted at developers and development/technical managers wanting to get
an overview of the functionality and features offered by the Applied Informatics POCO C++
Libraries. Familiarity with the C++ programming language is assumed.

Validity of This Document

This document covers release 1.3 and later releases of the Applied Informatics POCO C++
Libraries.

Copyright, Trademarks, Disclaimer

Copyright © 2006-2007, Applied Informatics Software Engineering GmbH. All rights reserved.

All trademarks or registered marks in this document belong to their respective owners.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Applied Informatics. This document is provided "as is" without
warranty of any kind, either expressed or implied, including, but not limited to, the particular
purpose. Applied Informatics reserves the right to make improvements and/or changes to this
document or the products described herein at any time.

Table of Contents
1 Executive Summary.. 4

1 Introduction... 5

2 Libraries and Frameworks.. 6
2.1 The Foundation Library 8
2.1.1 Core 8
2.1.2 Streams 9
2.1.3 Threading 9
2.1.4 DateTime 10
2.1.5 Filesystem 10
2.1.6 Logging 10
2.1.7 Processes 10
2.1.8 Shared Libraries 10
2.1.9 Notifications 11
2.1.10 Events 11
2.1.11 Crypt 11
2.1.12 Text 11
2.1.13 Regular Expressions 11
2.1.14 URI 11
2.1.15 UUID 11
2.1.16 Cache 11
2.2 The Net Library 12
2.2.1 NetCore 12
2.2.2 Sockets 12
2.2.3 Reactor 12
2.2.4 MIME Messages 13
2.2.5 HTTP 13
2.2.6 FTP 13
2.2.7 Mail 13
2.2.8 HTML 13
2.3 The NetSSL Library 13
2.4 The XML Library 13
2.4.1 SAX2 14
2.4.2 DOM 14
2.4.3 XMLWriter 15
2.5 The Util Library 15
2.5.1 Configuration Files 15
2.5.2 Command Line Options 15
2.5.3 Tools and Server Applications 16
2.6 The Data Library 16

3 Portability and Platforms ...17
3.1 Supported Platforms 17
3.2 Porting 17
3.2.1 Target Platform Requirements 17
3.2.2 C++ Compiler Requirements 18

4 Support, Licensing and Contact..19

POCO C++ Libraries
White Paper 4/19

1 Executive Summary
This document gives an overview of the Applied Informatics POCO C++
Libraries (formerly C++ Portable Components). The POCO C++ Libraries
are a collection of open-source class libraries that simplify the development
of network-centric, portable applications in C++. The libraries integrate
perfectly with the C++ Standard Library and fill many of the functional gaps
left open by it. Their modular and efficient design and implementation
makes the POCO C++ Libraries extremely well suited for device software
development, an area where the C++ programming language is becoming
increasingly popular, due to its suitability for both low-level (device I/O,
interrupt handlers, etc.) and high-level object-oriented development.

The POCO C++ Libraries help developers to focus on the unique core
features of the product they are developing – the features that will ultimately
sell the product. By reusing the tried and tested components provided by the
POCO C++ Libraries, developers do not need to waste valuable time and
resources re-inventing the wheel.

The classes provided by the Applied Informatics POCO C++ Libraries
provide support for multi-threading, streams, logging and error reporting,
accessing the filesystem, shared libraries and class loading, configuration file
and command line handling, security, network programming (TCP/IP
sockets, HTTP, FTP, SMTP, SSL/TLS, etc.), XML parsing (SAX2 and DOM)
and generation, as well as SQL database access.

POCO C++ Libraries
White Paper 5/19

2 Introduction
C++ is slowly but steadily replacing C as the programming language of
choice for embedded or device software development. While C++ has long
been considered prohibitively resource intensive for embedded devices, with
today's available powerful embedded hardware this is certainly no longer the
case. For example, today's smart phones have roughly the same computing
power (in terms of processor performance and memory capacity) than
engineering workstations from 12 years ago, and 32-bit RISC
microprocessors are state-of-the-art for embedded platforms.

What makes C++ quite unique among programming languages is that it
covers the full range from low-level programming (interrupt service
routines, direct hardware access) to high-level programming (classes,
generic programming) in one language, without the need to connect both
ends via awkward artificial interfacing mechanisms. With the software for
embedded devices becoming more and more sophisticated, the high level
abstractions of C++ are certainly needed in addition to its suitability for
low-level programming.

What is missing from C++, however, is a rich standard library comparable
to the Java and .NET class libraries and frameworks. The C++ standard
library is a first step in this direction, but it still lacks important features
such as filesystem access and multithreading support. While there is a large
number of both commercial and open source class libraries filling this gap
available today, many of these libraries integrate very poorly with the
standard library. Even more so, they do not play very well with each other.
They often bring their own string and collection classes, thus complicating
their integration in existing code bases. Furthermore, since they duplicate
the functionality of the standard library, they significantly increase the code
size of the applications that use them. This is an issue specifically for
embedded applications, where memory footprint is an important factor.

The Applied Informatics POCO C++ Libraries (formerly known as the C++
Portable Components) have been designed to fill the gaps left open by the
C++ standard library. Unlike other class libraries, the POCO C++ Libraries
have been designed for extreme modularity. You only take those classes and
frameworks that you need for your particular project from the library, so the
stuff that you do not need will not unnecessarily bloat your binaries. To
accomplish this goal, the POCO C++ Libraries are delivered in source code
form. Furthermore, an easy-to-use configuration builder application
(PocoBuilder) is included that allows you to easily create your custom
version of the POCO C++ Libraries, containing only those features you need
for your specific project.

The Applied Informatics POCO C++ Libraries help you and your
developers to focus on your product's unique core features – the features
that will ultimately sell your product. Developers do not need to waste
valuable time and resources re-inventing the wheel.

POCO C++ Libraries
White Paper 6/19

3 Libraries and Frameworks
The POCO C++ Libraries consist of a number of tried and tested class
libraries and frameworks that greatly simplify the development of portable,
network-centric C++ applications. While the POCO C++ Libraries also
support typical desktop and server platforms (Windows, Mac OS X, Linux,
Solaris, HP-UX, Tru64), they are extremely well suited for embedded
platforms, such as embedded Linux, QNX or VxWorks. The POCO C++
Libraries have been designed so that they allow you to take out only those
components needed for your particular application – there is no need to
always embed the overhead of the entire package to your application unless
you really need it.

Figure 1 gives a coarse overview of the architecture of the POCO C++
Libraries. The heart of POCO is the Foundation library. Among other useful
classes and frameworks, the Foundation library provides numerous classes
that shield the programmer from the underlying operating system
application programming interface (API), and thus enable true cross-
platform programming in a write once – compile anywhere sense. While
embedded development is still often a tightrope walk between high-level
abstractions – fostering maintainability and portability – and maximum
code efficiency, especially maintainability and code portability are becoming
increasingly important. After all, hardware platforms and operating systems
change more frequently than the software systems that run on them. With
hardware platforms being commodities these days, it is the software that
contains your company's valuable intellectual property. The POCO C++
Libraries include a deliberately thin platform abstraction layer that is
extremely well suited for embedded platforms, putting only very little
overhead between your software and the target hardware.

Figure 1 POCO C++ Libraries Overview

Built upon the Foundation library are various libraries providing higher-
level functions. The Net library provides implementations of various
network protocols and servers like HTTP, FTP, SMTP and others. The XML

POCO C++ Libraries
White Paper 7/19

library provides an XML parser and writer, supporting the industry-
standard SAX2 (Simple API for XML, Version 2) and DOM (Document
Object Model) interface specifications. The Util library offers classes for
processing configuration files and command line arguments, as well as a
framework for creating server applications, implemented as Unix daemons
or Windows services. Finally, the Data library provides uniform access to
various SQL databases. For embedded applications, the SQLite database
engine is supported.

The POCO C++ Libraries are entirely based on the C++ standard library,
including the Standard Template Library (STL). Therefore, unlike many
other libraries, the POCO C++ Libraries do not bring in their own string
and collection classes, which eases their integration into your own projects.
However, extensive use of STL classes can lead to increased code size, due to
code duplication caused by template instantiations. To avoid code bloat, the
POCO C++ Libraries only use a subset of the classes provided by the C++
standard library – strings, I/O streams and some of the container classes.
Some C++ compilers for embedded platforms bring their own customized
versions of the C++ standard library, containing only a subset of the
functionality defined by the standard, with the goal of reducing the memory
footprint of the library. It is possible to use the POCO C++ Libraries with
these restricted libraries (although restrictions might apply, depending on
what is provided by the actual standard library implementation).

The POCO C++ Libraries consistently use C++ exceptions for error
handling, thus making life easier for developers. Without exceptions, error
handling is often done insufficiently (for example, function return values
denoting success or failure are often ignored), leading to hard-to-track-
down bugs. With modern C++ compilers, the runtime overhead caused by
exception handling is minimal, and the advantages of exception handling far
outweigh its costs. Consequent use of exceptions leads to more stable and
better maintainable code.

POCO C++ Libraries
White Paper 8/19

3.1 The Foundation Library

The Foundation library is the heart of the POCO C++ Libraries. Figure 2
gives an overview of its components.

Figure 2 The Foundation library

The various components and the functionality they provide are outlined in
the following paragraphs.

3.1.1 Core

The Core component, as its name implies, provides the most basic
functionality of the Foundation library. It consists of five subcomponents
that provide the following services:

3.1.1.1 Platform Abstraction

Included in the platform abstraction layer are platform-independent fixed-
size data types (8, 16, 32 and 64 bit signed and unsigned integers), utility
classes for converting between big-endian and little-endian integers,
mechanisms for getting information about the operating system platform,
and an interface to the system debugger.

3.1.1.2 Memory Management

This subcomponent includes a smart pointer and a shared pointer template
class that implements reference counting-based garbage collection and a
template class that simplifies the proper instantiation and destruction of
singleton objects.

POCO C++ Libraries
White Paper 9/19

3.1.1.3 String Utilities

Handy functions for case-insensitive string comparison, case conversion,
whitespace removal, formatting, character transformation and
concatenation, as well as a string tokenizer class.

3.1.1.4 Error Handling

Classes, functions and macros for error handling, including various
exception classes and useful macros for assertions and null pointer checks
that enable you to write self-testing code. On some platforms, the library can
be configured to automatically break into the debugger when an assertion is
violated. The POCO C++ Libraries themselves make extensive use of
assertions, allowing you to find subtle bugs in your code (for example,
invalid method parameters or missing initializations) as soon as possible.
Also, a special debug mode is supported where additional runtime checks
are enabled.

3.1.1.5 Hash Tables

An efficient implementation of a linear hashtable provides the base for hash-
based set and map implementations.

3.1.2 Streams

The Streams component provides various I/O stream and corresponding
stream buffer classes, including base classes that make implementing your
own custom stream and stream buffer classes much easier. All stream classes
are based on and fully compatible with the standard I/O streams provided by
the C++ Standard Library. Included are base classes for buffered and
unbuffered streams, encoders that encode binary data in Base64 or hex-
binary encoding (suitable for embedding binary data in XML documents or
e-mail messages) and the corresponding decoders, a stream counting
characters, lines and column numbers, as well as stream-based data
compression/decompression based on the popular open source zlib data
compression library.

3.1.3 Threading

Writing multithreaded code is hard. The platform independent classes for
creating and managing threads, synchronizing threads (mutexes, conditions,
events, reader/writer locks and semaphores), thread pool management and
timers considerably simplify this task. A common programming error in
multithreaded code is to forget to unlock a mutex that has been locked
earlier in the code (for example, if a block is exited in the middle due to an
exception or a "hidden" return statement). The scoped lock classes provided
by the threading library ensure that mutexes are always properly unlocked
when the program block where they have been locked is left. They therefore
help to avoid a common source for deadlocks in multithreaded applications.

POCO C++ Libraries
White Paper 10/19

The multithreading classes also support the concept of active objects. An
active object has methods that automatically execute in their own threads.
Examples are activities – long running methods that perform background
tasks and active methods – methods that execute asynchronously to their
caller. Active objects relieve the programmer from thread management
issues and help to reduce the complexity of multithreaded code.

3.1.4 DateTime

Timestamp and stopwatch classes for time keeping and measurement with
up to microsecond (64-bit) accuracy. The actual time resolution depends on
the underlying operating system platform. Classes for working with time
spans and time zones and a class for working with calendar dates.

3.1.5 Filesystem

Easy to use classes for working with paths, files and directories in a platform
independent manner. A directory iterator class that allows iteration over the
files in a directory in C++ style. A path class that supports all commonly
used notation styles for paths (Unix, Windows, OpenVMS). Classes that
simplify working with temporary files. A Glob class for finding files using
Unix-style patterns.

3.1.6 Logging

Logging is a valuable debugging aid especially for multithreaded
applications. The Foundation library provides a powerful and extensible
logging framework that is unobtrusive to use. The framework supports a
variety of different log destinations (console, log files, Unix Syslog, Windows
Event Log, remote logging, etc.). Based on a concept of cascaded log
channels, filters and message formatters and configurable both
programmatically and via configuration files (with help from the Util
library).

3.1.7 Processes

Creation and management of processes, as well as synchronization among
cooperating processes in the form of global mutexes and global events. Also
supported are pipes for communicating with child processes.

3.1.8 Shared Libraries

Classes for working with shared libraries in a platform independent way.
Including a template-based class loader that loads C++ classes dynamically
at runtime from shared libraries, similarly to the class loader available in
Java. This class loader frees a developer from many of the burdens when
building plug-in architectures for applications.

POCO C++ Libraries
White Paper 11/19

3.1.9 Notifications

Facilities for type-safe sending and delivery of notification objects within a
single thread or from one thread to another, also well suited for the
implementation of notification mechanisms. A notification queue class for
distributing tasks to worker threads, simplifying the implementation of
multithreaded servers.

3.1.10 Events

Support for both synchronous and asynchronous event notifications.
Similar in style to the event mechanism in C# and thus easy to use.

3.1.11 Crypt

Implementations of various message digest algorithms (MD2, MD4, MD5,
SHA-1) that work on streams or buffers, an implementation of the popular
HMAC message signature algorithm as well as random number and random
data generation.

3.1.12 Text

Classes for working with text in various encodings (ASCII, ISO Latin-1,
UTF-8, UTF-16, etc.), as well as for converting text between encodings that
work with the standard C++ string and I/O stream classes. Support for
working with UTF-8 encoded Unicode text using the standard library’s
string class.

3.1.13 Regular Expressions

Perl-compatible regular expressions, based on the popular open source
PCRE library and wrapped in an intuitive to use class.

3.1.14 URI

Classes for working with Uniform Resource Identifiers (URIs), including an
URIStreamOpener class.

3.1.15 UUID

Classes for cross-platform UUID (Universally Unique Identifier)
manipulation and generation (time-based, name-based and random-based).

3.1.16 Cache

A framework for implementing caches with various expiration strategies.

POCO C++ Libraries
White Paper 12/19

3.2 The Net Library

The Net library contains a variety of classes for network programming. Basic
TCP/IP sockets, as well as higher level network protocols are supported.
Figure 3 gives an overview of the Net library.

Figure 3 The Net library

Many embedded devices already have Ethernet network interfaces and
support the TCP/IP protocol. Configuration, maintenance and monitoring
functions for such devices can often be provided via a browser-based Web
interface. Furthermore, many embedded devices will soon need to provide
Web service interfaces, based on the Simple Object Access Protocol (SOAP)
and HTTP. The classes provided by the Net library provide most of the
building blocks required to implement these features.

3.2.1 NetCore

The NetCore classes provide the core functionality needed in every network
application, such as handling of network addresses, and network name
resolution (DNS).

3.2.2 Sockets

The socket classes provided by the POCO C++ Libraries take care of all the
(often overlooked) subtleties that need to be dealt with when working with
the Berkeley socket API, the industry's standard API for TCP/IP
programming. Available are classes for TCP (stream) and UDP (datagram)
sockets, TCP and UDP listeners and a multithreaded TCP server.
Furthermore, support is provided for IPv4 and IPv6, as well as UDP
broadcast and multicast. The TCP server, as well as network stream classes
that work with sockets simplify the development of applications that provide
a Telnet (RFC 854) text-based user interface.

3.2.3 Reactor

Support for the popular Reactor, Acceptor and Connector patterns useful
for high-performance network applications.

POCO C++ Libraries
White Paper 13/19

3.2.4 MIME Messages

Classes for dealing with MIME (Multipart Internet Mail Extensions, RFC
2045 and RFC 2387) multi-part messages.

3.2.5 HTTP

A HTTP (Hyper Text Transfer Protocol, RFC 2616) client library, as well as
an extensible, multithreaded HTTP server framework are. Both the server
and the client support HTTP 1.0 and HTTP 1.1.

3.2.6 FTP

A FTP (File Transfer Protocol, RFC 959) client for file transfer applications.

3.2.7 Mail

Classes for sending e-mail messages via SMTP (Simple Mail Transfer
Protocol, RFC 2821) servers with support for e-mail attachments, as well as
classes for downloading e-mail messages from POP3 (Post Office Protocol
Version 3, RFC 1939) servers.

3.2.8 HTML

Classes for working with HTML forms on both the client and the server side.
Included is support for HTTP file uploads.

3.3 The NetSSL Library
The NetSSL library extends the Net library with support for secure,
encrypted communication based on SSL (Secure Sockets Layer) and TLS
(Transport Layer Security).

3.4 The XML Library

The eXtensible Markup Language (XML) library provides classes and
frameworks for reading and writing XML data. The XML parser is based on
the well-known open source Expat parser. On top of that parser sits a thin
and lightweight layer that implements a C++ adoption of the SAX2 (Simple
API for XML, version 2) interface for event-based XML parsing. A DOM
(Document Object Model) implementation is provided for document-based
XML manipulation. The DOM implementation has been optimized for low
memory footprint. It provides a complete implementation of the DOM
Level 2 Events specification, making it suitable for interactive applications.
Figure 4 gives an overview of the library.

POCO C++ Libraries
White Paper 14/19

Figure 4 The XML library

While the XML library is normally used on top of the Foundation library, it
can also be used (with some restrictions) on its own, therefore avoiding the
small overhead incorporated by the Foundation library.

The XML library fully supports Unicode and it can be used in two ways. For
one, it can be used with narrow (char-based) strings. In this case, all
characters are UTF-8 encoded. Alternatively, the library can be used with
wide (wchar_t-based) strings. UTF-16 encoding is used in the latter case.
Mode selection is done at compile time, via preprocessor macros.

The XML parser is non-validating, which is a good choice for embedded
platforms, as fully validating parsers have a considerable higher runtime and
memory overhead.

3.4.1 SAX2

The POCO XML parser fully implements the SAX2 specification for event-
based XML parsing. Also supported are most of the optional SAX2
Extensions (1.0 and 1.1). While the SAX2 interface is somewhat less
convenient to use when compared with DOM, SAX2 is the interface of
choice for efficient parsing of XML data and if the available memory is
limited.

3.4.2 DOM

The DOM interface is suitable for in-memory storage and manipulation of
XML data. Its implementation has been optimized for a lowest possible
memory footprint (while not sacrificing performance) and the DOM Level 2
Events specification is fully supported, making the DOM implementation
suitable for interactive applications.

The DOM implementation provided by the POCO XML library adheres to
the following W3C specifications:

POCO C++ Libraries
White Paper 15/19

• Document Object Model Level 1

• Document Object Model Level 2 Core

• Document Object Model Level 2 Events

• Document Object Model Level 2 Traversal and Range

3.4.3 XMLWriter

The XML writer class simplifies the creation of XML data. Based on the
SAX2 interfaces, it supports namespaces and formatted output in addition
to ensuring that the written XML is well formed. Different text encodings
are supported.

3.5 The Util Library
The POCO Utilities library makes available classes for working with
configuration files and command line arguments, as well as a framework for
building command line tools and server applications.

3.5.1 Configuration Files

The Util library supports unified handling of configuration files in various
formats. The supported configuration file formats are Java-style property
files, Windows-style initialization (.ini) files and XML files. Regardless of the
file format, the interface for accessing the configuration data is always the
same. Also available are mechanisms to combine configuration data from
multiple sources. The framework can easily be extended with support for
new configuration data sources, for example a database or the Windows
registry.

3.5.2 Command Line Options

Also contained in the Util library are classes for platform-independent
handling of command line options. The POCO C++ Libraries enable the
creation of applications that work on different operating system platforms.
Users on different platforms, however, expect to specify command line
options in different, platform-specific ways. For example, users on Unix
platforms expect to specify options using a dash (-) or double-dash (--)
syntax. On the other hand, users on Windows or OpenVMS platforms
expect to specify options using a slash (/) syntax. The classes for command
line option handling automatically recognize options in the appropriate
syntax for the respective platform, thus ensuring a consistent user
experience on every supported platform. Furthermore, the classes take care
of handling missing, duplicate, incompatible or ambiguously specified
options appropriately, thus saving the developer tedious work. Automatic
validation of command line argument values, based on regular expressions
or numeric ranges is also supported.

POCO C++ Libraries
White Paper 16/19

3.5.3 Tools and Server Applications

Last but not least the Util library provides a framework for writing
command line based tools or server applications. A server application is
typically expected to run as a daemon process on a Unix platform, or as a
service on a Windows platform. The application framework classes in the
Util library implement the necessary glue code to achieve this transparently,
allowing the same executable to run either from the command line, or as a
daemon or service.

3.6 The Data Library

The Data library provides unified database access to various SQL-based
databases. For accessing enterprise database systems like Oracle or SQL
Server, a ODBC-based connector is available. For embedded scenarios, the
SQLite embeddable SQL database engine is supported. Additional
connectors (e.g., to MySQL) can be easily added on demand.

The Data library uses advanced C++ features to provide the illusion of
embedding SQL statements directly in C++ code. Basic Object-Relational
mapping is supported, so that C++ objects can be directly used in SL
statements.

POCO C++ Libraries
White Paper 17/19

4 Portability and Platforms
The Applied Informatics POCO C++ Libraries are available on a variety of
platforms. The platform-dependent and platform-independent parts of the
library have been clearly separated, which makes porting the library to new
platforms a relatively easy task. An extensive test suite ensures that
everything works as expected on a new platform.

4.1 Supported Platforms
All major desktop and server platforms are readily supported, including
Windows XP, Mac OS X, Linux, HP-UX, Tru64 and Solaris, in addition to
embedded Linux, QNX Neutrino and other POSIX-compliant embedded
operating systems.

4.2 Porting
Porting the POCO C++ Libraries to a new platform can be done by yourself,
with optional support from Applied Informatics' developer team.
Alternatively, Applied Informatics can be contracted to do the complete
porting to a platform of your choice.

4.2.1 Target Platform Requirements

Target platforms for the POCO C++ Libraries must meet the following
minimum requirements:

• a 32-bit CPU

• at least 8 MB of memory available for application code (RAM+ROM)

• optional FPU (or software-based floating point support)

• a TCP/IP stack for the Net library

• multithreading support for the threads and synchronization classes

• filesystem support is required for certain components

• an ANSI/ISO C++ conforming C++ compiler; see next section

POCO C++ Libraries
White Paper 18/19

4.2.2 C++ Compiler Requirements

To successfully build the POCO C++ Libraries, a C++ compiler must meet
the following requirements:

• full ISO/IEC 14882 standards compliance (including templates,
exception handling, runtime type identification)

• a conforming implementation of the C++ standard library, including
the STL (minimum: strings, I/O streams and containers/iterators)

Following is an incomplete list of compilers (and platforms) known to work
with the Applied Informatics POCO C++ Libraries:

• Microsoft Visual C++ 13.10 and 14.0 (Windows 2000/XP/CE)

• GCC 3.3-20030314 (Mac OS X 10.3)

• GCC 4.0 (Mac OS X 10.4)

• GCC 3.3.1 (Linux 2.4.21, QNX Neutrino 6.3)

• GCC 3.4.1 (Linux 2.4.21 and 2.6.3)

• Sun ONE Studio 11 C++1 (Solaris 9)

• Compaq C++ 6.5-040 (HP Tru64 5.1b)

• HP ANSI C++ A.03.57 (HP-UX 11.11 PA-RISC)

• HP ANSI C++ A.06.12 (HP-UX 11.23 IA64)

1 With restrictions – some of the class templates for tuples and hash tables in release 1.3 cannot be used due to
compiler insufficiencies. Release 1.2 is fully supported.

POCO C++ Libraries
White Paper 19/19

5 Support, Licensing and Contact
The Foundation, XML, Net and Util libraries are available under the Boost
open source license, which makes them free for both open source and
commercial use.

For a complete description of the license regulations and support options
please visit http://www.appinf.com/en/services.

Applied Informatics can be reached at one of the following addresses:

Applied Informatics Software Engineering GmbH

St. Peter 33
9184 St. Jakob im Rosental
Austria

Phone: +43 4253 32596
Fax: +43 4253 32096
E-Mail: info@appinf.com
Web: www.appinf.com

