
Designing and Building Portable Systems in C++

Günter Obiltschnig, Applied Informatics
guenter.obiltschnig@appinf.com

Abstract . C++ covers the whole range from low-level to high-level
programming, making it ideally suited for writing portable software. However,
code portability is often neglected in embedded systems engineering. With
software becoming ever more complex, and hardware becoming ever more
interchangeable, this oversight can turn into a problem when software must be
ported to a new platform. This paper shows tools and techniques to design and
build portable software in C++. It shows how to use C++ features to
encapsulate platform-dependent parts (compiler/language differences,
operating system interfaces, input/output) of programs, thus ensuring
portability of the resulting system.

1 Introduction
Software for embedded systems is becoming ever more complex. At the same time, the
significance of the hardware in embedded systems, at least when it comes to CPUs and
controllers, is steadily decreasing. Custom hardware designs are replaced by off-the-shelf
components and designs. The value of embedded systems is moving from the hardware to the
software side.

1.1 The Significance of Software
Historically, software for embedded systems has been written specific to the underlying
hardware. This is frequently still so today, especially in 8-bit and 16-bit systems, where the
limits of the hardware restrict the size and complexity of the software. However, 32-bit (and
more so, 64-bit) platforms allow for nearly unlimited complexity. The know-how and
intellectual property hidden in embedded software grows enormously, and software starts to
outgrow or outlive the underlying hardware platforms. Therein lies the need to design and
implement software in a way that makes it easy to transfer it to a new hardware platform.

1.2 RTOS to the Rescue?
32-bit platforms mandate the use of an embedded/real-time operating system (RTOS) that
provides services like task/process or thread scheduling and synchronization, memory
management, input/output and inter-process communication to application software. An
RTOS, to some degree, also decouples application software from the specifics of the
underlying hardware, like I/O port addresses and hardware interrupts. A first step to designing
portable software is to choose an operating system that is available for multiple hardware
platforms. This provides the possibility to switch, relatively painlessly, to a more powerful
hardware platform should the need ever arise. The respective RTOS has to be available for
that platform, however. There is still the problem, of course, what happens if it is the RTOS

2

that does no longer suit the requirements. The move to a different RTOS can be a real pain if
the application programming interfaces (APIs) of the operating systems differ. Unless the
APIs of both operating systems conform to the POSIX specification, incompatible APIs will
certainly be the norm and all code that interacts with the operating system needs to be
rewritten. This is non-trivial and error-prone. Fortunately, many embedded operating systems
already support POSIX (for example, QNX, Integrity, embedded Linux) or at least provide a
wrapper library that provides POSIX APIs on top of the operating system’s native API (for
example, VxWorks). Still, there are major embedded operating systems (like Windows CE)
that do not support POSIX. This issue will be discussed later in the paper.

1.3 The Programming Language Choice
C++ is slowly but steadily replacing C as the programming language of choice for embedded
software development. While C++ has long been considered prohibitively resource intensive
for embedded devices, with today's available powerful embedded hardware this is certainly no
longer the case. For example, today's smart phones have roughly the same computing power
(in terms of processor performance and memory capacity) as engineering workstations from
12 years ago, and 32-bit RISC microprocessors are state-of-the-art for embedded applications.
What makes C++ unique among programming languages is that it covers the full range from
low-level programming (interrupt service routines, direct hardware access) to high-level
programming (object orientation, generic programming) in one language, without the need to
connect both ends via awkward artificial interfacing mechanisms. With the software for
embedded systems becoming ever more sophisticated, the high level abstractions of C++ are
certainly needed in addition to its suitability for low-level programming.

1.3.1 A Short History of C++
The history of C++ started in 1979, when Bjarne Stroustrup of Bell Labs started to extend the
C programming language with object-oriented features [1]. Stroustrup, who at the time
worked as an operating system researcher, was in search for a tool that would let him write
simulators, operating systems or do systems programming in general. His wish list for such a
tool included good support for program organization (i.e. classes), strong type checking and
concurrency support. The programs produced by such a tool should run as fast as possible and
it should be possible to combine separately compiled units, even those written in other
languages, such as C or Fortran, into programs. Finally, the tool should allow for highly
portable implementations. As Stroustrup could not find such a tool on the market, he decided
to build his own. He also chose not to completely start from scratch and to build an all-new
language, but to take an existing language as starting point. C was the language of choice for
this purpose, because of its flexibility, efficiency, availability and portability.

1.3.2 The Early Days
As a superset of C, the new language provided “flexible and efficient facilities for defining
new types”, as Bjarne Stroustrup wrote in the first edition of The C++ Programming
Language. Inspired by the object-oriented features of the Simula programming language,
Stroustrup enhanced C with objects, classes, inheritance and, later, virtual functions, while
still maintaining backwards compatibility with the old language. This first version of what
would later become C++ was a quite simple, yet still powerful language called C with
Classes. The language was implemented as a pre-processor for C, called Cpre.

3

1.3.3 Evolution
From 1982 to 1984, C with Classes gradually evolved into C++. The name C++, suggested by
Rick Mascitti, first appeared in December 1983. Prior to this, the language was called C84 for
a few months. A new compiler front-end, Cfront, was designed and implemented from 1982
to 1983.
The first commercial C++ compiler appeared in 1985. In the same year, the first edition of
The C++ Programming Language was published. From the beginning on, the language was
steadily improved and new features were being added. Cfront served as the reference
implementation of C++, and the major releases corresponded to the new features added to the
language. Release 2.0 (1989) brought multiple inheritance. Release 3.0 (1991) added
templates and release 4.0 (scheduled for 1993) was supposed to add exception handling, but
was never released due to the overwhelming complexity of implementing it in the existing
code base.

1.3.4 Standardization
The standardization process for C++, driven by ANSI and ISO, began in 1991 and the final
standard was published in September 1999, as ISO/IEC 14882. A major addition to the
standard was the Standard Template Library (STL) in 1994. Developed by Alexander
Stepanov and Meng Lee at Hewlett Packard Laboratories, the STL brought ready-made
generic algorithms and container classes to C++. It also introduced the concept of generic
programming to a large audience outside of universities and research laboratories.
During all these years, C++ has turned into a quite complex, but at the same time extremely
powerful language. The complexity of C++ manifested itself best in the long time it took
compiler vendors to bring standards-compliant (and largely bug free) compilers to market.
When Andrei Alexandrescu released Modern C++ Design, in which he wrote about advanced
uses of templates, in 2001, almost no commercially available compiler could handle the
standard compliant code presented therein.
Porting source code that used advanced C++ features to different compilers was a painful
experience for a long time. Finally, today, it is possible to write both standard compliant and
portable C++ code for a large number of platforms.

2 C++ Cross-Platform Programming Issues
Despite being designed as a platform-neutral language, writing cross-platform software in
C++ is a not-so-easy task, especially when it comes to functionality not covered by the C++
Standard Library. But even a few features (or lack thereof) of the language itself can be a
source of problems.

2.1 Compiler Bugs and Implementation Issues
Among the major problems in writing portable C++ code are the dissimilarities in the
implementation of different vendor’s C++ compilers. While the C++ standard describes the
language in great detail, there still seems to be some degree of misinterpretation in the C++
compiler-writer-community. Another source of grief lies in the sheer complexity of C++ and
the trouble this causes to its implementers.

2.1.1 The Complexity of C++
Especially when it comes to templates, many compilers still have trouble handling C++
correctly. An early version of the DEC C++ (5.6) compiler for OpenVMS could not even

4

parse some of its own standard library header files. The automatic instantiation of templates
in conjunction with shared libraries caused nightmares on many platforms. Nesting of
templates, member templates, and partial specialization can cause problems even today.
Furthermore, the implementations of the standard library that shipped with the various
compilers had bugs on their own, up to a degree that made them practically unusable for use
in real-world applications (the implementation that came with Microsoft Visual C++ 6 with
its multithreading issues comes to mind here). A good alternative in such a case is STLport,
an open-source, portable, high-quality implementation of the C++ standard library.
Life was — and even sometimes still is — quite hard for developers wanting to write both
standards-compliant and portable C++ code. Fortunately, with the latest C++ compiler
releases, things are finally getting better.

2.1.2 Implementation-Defined, Unspecified and Undefined Behavior
The C++ standard specifies the exact (required) behavior for most, but not for all language
elements. Certain language constructs are described as implementation-defined, unspecified or
undefined.
Implementation-defined means that the compiler writer is free to implement a certain
language construct in any way he sees appropriate, as long as the exact behavior is consistent,
documented, and the compilation succeeds. The standard may specify a number of allowable
behaviors from which to choose one, or it may leave it entirely up to the compiler writer.
Unspecified is similar, except that the behavior of the implementation need not be
documented and need not even be consistent.
Undefined behavior means that the standard does not place any requirements whatsoever on
the implementation. The compiler may even fail when compiling such a language construct,
or the program may silently produce incorrect results.
The rationale behind all this is that it allows the compiler writer to implement certain
constructs in a way that works best for the target platform. The downside of all this is that it
opens up opportunities for portability problems. Code that works as expected on one platform
can produce different, unexpected results on another platform. Even more so, the behavior
can be different depending on whether the compiler's optimizer has been used, or not.
An example for unspecified behavior is the order in which function arguments are evaluated
in a function call. Consider the following example:

void f(int a, int b, int c)
{
 cout << "a = " << a << ", b = " << b << ", c = " << c << endl;
}

int main(int argc, char** argv)
{
 int i = 0;
 f(i++, i++, i++);
 return 0;
}

This example will yield surprisingly different results on different platforms. For example, on
Mac OS X, using GCC 3.3, the program fragment yields the following output
a = 0, b = 1, c = 2

5

This is what one would intuitively expect, assuming left-to-right argument evaluation.
Compiled with HP ANSI C++ A.03.57 on HP-UX 11.11, the result is the same. However,
when compiled with Compaq C++ 6.5 on HP Tru64 5.1, the program yields:
a = 0, b = 0, c = 0

which may be surprising. However, with regard to the C++ standard, both results are correct.
Firstly, the compiler is free to evaluate the function arguments in any order it likes – from left
to right, from right to left, in order of decreasing expression complexity, or even in random
order. Secondly, the compiler is free to delay the increment operation until all arguments have
been evaluated.

2.1.3 Language Extensions and Syntactical Freedom
Especially Microsoft Visual C++ has many “features” that make writing portable code
unnecessarily hard for developers not paying enough attention to correct syntax. There is a
compiler setting to turn off language extensions, but with this setting enabled, one can no
longer use the Windows Platform SDK, as its header files rely on non-standard language
features. The most common problem cases are presented below.

Method declarations

The following class definition is valid in Microsoft Visual C++, but causes errors on
standards conformant compilers.

Class A
{
 void A::m();
};

In this example, the class name is part of the method declaration, which is both redundant and
not allowed by the standard. Mistakes of this kind happen very easily if a class is extended
with a new method. The developer starts by implementing the new method in the
implementation file, and then adds the corresponding method declaration to the header file by
copy-and-paste, forgetting to remove the class scope from the declaration. The code compiles
fine with Microsoft Visual C++, but compilers that are more stringent will produce error
messages when being given such code.

Pointers to members

Microsoft Visual C++ allows a simplified syntax for passing pointers to member functions.
The following class declaration defines a pointer to a method of B taking no arguments, as
well as methods using this pointer type.

Class B
{
public:
 typedef void (B::*M)(); // pointer to a method of B taking no
args
 void invoke(M m);
 void do();
 void test();
};

The methods invoke() and do() can be implemented as follows:
void B::invoke(B::M m)
{
 (this->*m)();
}

6

void B::do()
{
 // do something interesting here
}

Using Microsoft Visual C++ (with language extensions enabled), it is possible to implement
test() in the following way, which does not seem to be wrong at first glance:

void B::test()
{
 invoke(do);
}

Well-behaved compilers will not accept this code, as the correct way to specify a pointer to a
non-static member is &Class::Method. Therefore, for portable code, one needs to write:

void B::test()
{
 invoke(&B::do);
}

Platform-specific types

It can often be seen that developers use platform-specific or user-defined types where a
standard type is more appropriate. Frequently this happens with the Boolean type. There were
times when C and C++ did not have a built-in Boolean data type, and in these times it was
common for every project to define its own Boolean type, usually called BOOL, along with its
values TRUE and FALSE defined as preprocessor macros. Apparently, many developers got so
used to these workarounds that they use them even today. Such kludges have no business in
portable code. C++ has the bool type, so use it!
The situation is similar with certain platform-specific types (DWORD, TCHAR, LPCTSTR), which
are often used in situations where they are inappropriate.

The last line

The C++ standard requires the last line in a C++ source file to be terminated by a newline
character. This rule is often violated since many compilers do not enforce it. There are,
however, compilers that do enforce this rule, and these compilers will produce warnings or
errors when being fed non-conforming source files.

2.2 Fixed-Size Data Types
C++ does not make any guarantees about the size of fundamental types, except for vague
requirements such as that a certain type must have at least the size of another type (for
example, int must have at least the size of short) and that an int has the natural size
suggested by the system architecture. So what can be done if a fixed-size data type (a 32-bit
unsigned integer, for example) is needed in portable code? The solution is to put type
definitions for all such fixed-sized types in a header file. The actual type definitions for a
specific platform (or compiler), depend on the platform. Here comes the hard part. One has to
dig out the reference manuals for all the compilers to be used, and look up the sizes for the
fundamental types. The size of some types will be different depending on whether compiling
for 32-bit mode or for 64-bit mode. What makes things even more difficult is that some
compilers provide fundamental types over and above those defined in the C++ standard. Most
compilers for 32-bit platforms also have 64-bit signed and unsigned integer types. Yet, on
most 32-bit platforms, int and long are 32-bit types, so these compilers need non-standard

7

type names for their 64 bit integer types. Most compilers name these types long long and
unsigned long long. Microsoft Visual C++ calls them __int64 and unsigned __int64.
When working with character types, it must be kept in mind that char, unsigned char and
signed char are all different types. This is different for integer types, where, for example,
int and signed int are the same. Furthermore, the standard leaves it up to the
implementation whether the plain char type is signed or unsigned.
The C++ standard also defines a distinct wide character type, wchar_t. However, its
characteristics make it unsuitable for use in cross-platform code, as one cannot make any
general assumptions about its size or the character encoding it supports.
If one absolutely must store pointer values in integer types, it must be kept in mind that on
some 64-bit platforms a pointer might not fit into a long variable.
The ISO/IEC 988:1999 standard for C specifies a set of fixed-size integer types, defined in
the standard header file <stdint.h>. These types are int8_t, int16_t, int32_t, int64_t,
uint8_t, uint16_t, uint32_t, uint64_t, minimum-width and fastest-width variants of
them, as well as intptr_t and uintptr_t for holding pointer values. However, this header
file is not part of standard C++, so those types are not generally available to C++ programs.

2.3 Byte Order
Integer values made up of more than one byte can be stored in two ways. If a 16-bit (2 byte)
integer is taken as an example, it can be stored either with the low-order byte at the starting
address, or with the high-order byte at the starting address. The first alternative is known as
little-endian byte order, the second is known as big-endian byte order. Figure 1 illustrates
these two formats.

Figure 1. Little-endian vs. big-endian.

For big-endian, the higher-order bytes are stored on lower memory addresses and the lower-
order bytes are stored on higher memory addresses. For little-endian, the opposite approach is
used. In a multi-byte binary number, the leftmost bit, bit 0 in the lowest-order byte, is called
the least significant bit (LSB). The rightmost bit, bit 7 in the highest-order byte, is called the
most significant bit (MSB). Big-endian corresponds to the natural writing order for binary
numbers and values are more easily readable in a memory dump. In little-endian, multi-byte
values look somewhat awkward in a memory dump, as can be seen by the position of the
MSB and LSB in Figure 1. In the example a 16-bit integer is shown, but the same concept of
course applies to 32-bit and 64-bit integers as well.
There is no standard byte order scheme, so different systems use different byte orders, and
this leads to potential problems when binary data (via a file or a network connection) is
exchanged between systems. The inventors of the Internet protocols faced the same problem
and they solved it by specifying a network byte order, which all protocol data sent over the

8

network must obey. Network byte order is defined to be big-endian, and every operating
system supporting the Internet protocols provides functions for converting values from host
byte order to network byte order and back.

2.4 Data Alignment
Data alignment violations are a frequent source of problems when porting code from one
platform to another. Let’s take as an example the following imaginary piece of code, which
would work fine under Windows NT on Intel hardware.

struct Header
{
 UInt32 size;
 UInt32 checksum;
};
...
void handleData(void* pData)
{
 Header* pHeader = reinterpret_cast<Header*>(pData);
 for (int i = 0; i < pHeader->size; ++i)
 ...
}

What is wrong with this code? Well, the trouble starts when a program using this code is
compiled and run on, say, Sparc Solaris. One may suddenly get a nasty Bus error. Upon
further examination of the cause, one would get this bus error whenever the address pData
points to is not on a four-byte boundary. Or, in other words, the address is not properly
aligned. On most machines, a memory object of size s bytes must be located on a memory
address A such as that A mod s = 0.
What is the reason for the alignment requirement just described? Accessing values at
misaligned addresses causes hardware complications, since memory is typically aligned on
word boundaries. To reduce hardware complexity, many modern architectures do not provide
the additional logic required to support such addresses. On these architectures, an attempt to
access misaligned data will result in a hardware trap, which causes the bus error one would
experience on Solaris. To support misaligned memory access, the hardware must translate
every misaligned access into two separate, aligned memory accesses. The result of these two
operations must then be combined to yield the desired result, as depicted in Figure 2. Instead
of implementing misaligned accesses directly in hardware, system designers can implement
such accesses in software by providing a handler routine for the hardware trap, which then
carries out the necessary operations. Regardless of the approach taken, every misaligned
memory access, even if supported by hardware, is many times slower than an aligned access.

Figure 2. Accessing misaligned data. Two memory accesses must be carried out and the result combined.

9

2.5 Floating Point Types
Similar to integer types, the C++ standard does not specify any particular binary
representation for floating point numbers. The standard defines three floating point types:
float, double and long double. Type double must provide at least as much precision as
float, and long double must provide at least as much precision as double. Furthermore,
the set of values of the type float must be a subset of the values of type double and the set
of values of the type double must be a subset of the values of type long double. Although
not required by the standard, the implementation of floating point arithmetic used by most
C++ compilers conforms to a standard, IEEE 754-1985, at least for types float and double.
This is directly related to the fact that the floating point units of modern CPUs also implement
this standard. The IEEE 754 standard specifies the binary format for floating point numbers,
as well as the semantics for floating point operations.
Byte order also applies to floating point types, so on a big-endian machine, the constant π =
3.1415926... (or, strictly speaking, an approximation of it) as a float value, will be stored as
0x40 0x49 0x0F 0xDB, while on a little-endian machine it will be stored as 0xDB 0x0F 0x49
0x40. Of all three floating point types, long double is the least portable. Some systems do not
support long double directly; on these systems, it is the same size as a double. Byte order
issues aside, float and double values usually can be exchanged in binary format between
platforms; long double values cannot.
The IEEE 754 standard has some special features, and they are a major reason for problems
when porting floating point code between platforms. NaN (Not a Number) is a special value
representing the result of taking the square root of a negative number. Infinity is the result of a
divide by zero. Signed zero means there are two representations for zero: +0 and –0. There are
also gradual underflow and denormal numbers, but these two features are not universally
available. Finally, there are various rounding modes, floating point exceptions and flags,
which may be useful to some applications. C++ does not provide support for working with
these features (for example, checking for NaN or Infinity), but there are usually non-standard
functions provided by runtime libraries. Also, the C99 standard provides some support here.
Neither the IEEE 754 nor the C++ standard specify how transcendental functions like sin(),
cos(), exp(), etc. have to be implemented. Therefore, for the same arguments, the results
that these functions return on various platforms might not be the same. This is another reason
for getting non-identical results for the same expression on different platforms. The standard
also does not specify how the conversion from decimal floating point values to their binary
representation must be implemented.

3 Operating System APIs
Modern general-purpose operating systems give application and system programmers a
variety of programming interfaces to work with. At the lowest level, every operating system
provides so-called system calls, system services or executive services – functions directly
implemented in the operating system kernel, and invoked via some kind of software interrupt
or trap mechanism. On a higher level are library functions, such as those from the C library on
Unix. Windows NT goes one step further and has so-called personalities or subsystems –
different sets of programming interfaces that are all implemented in terms of the low-level
system services. The Win32 API is not, as one might easily guess, the native programming
interface of Windows NT, but rather a higher-level API built atop the largely undocumented
executive services.

10

System calls and library functions differ significantly between operating systems. The system
services of OpenVMS have not much in common with the Unix system calls, and the
Windows executive services, although conceptually similar to OpenVMS system services, are
an altogether different thing again. Parts of the Unix C library have been standardized in the
ANSI and ISO standards for C, and many C compilers for non-Unix platforms provide some
degree of Unix compatibility at the library level.
The situation is no different for embedded/real-time operating systems. While the APIs
offered are more lightweight than that of their general-purpose operating system counterparts,
the issues of everyone cooking up its own soup are the same.

3.1 Namespace Pollution
Some operating systems use macros in their system header files in a way that can lead to
nasty troubles for C++ programmers. Macros do not respect C++ namespaces, and this is
where the problem originates. Windows platforms provide two versions of most API calls.
One variant that works with Unicode strings, where each character is 16 bits wide, and a
second variant that works with 8-bit characters. For example, there is a function CreateFileW
that takes an Unicode string as first argument, and a function CreateFileA that takes an 8-bit
string as first argument. What most programmers use, however, is CreateFile. A look at the
Windows header file <winbase.h>, reveals following definitions:

WINBASEAPI
HANDLE
WINAPI
CreateFileA(
 IN LPCSTR lpFileName,
 IN DWORD dwDesiredAccess,
 IN DWORD dwShareMode,
 IN LPSECURITY_ATTRIBUTES lpSecurityAttributes,
 IN DWORD dwCreationDisposition,
 IN DWORD dwFlagsAndAttributes,
 IN HANDLE hTemplateFile
);
WINBASEAPI
HANDLE
WINAPI
CreateFileW(
 IN LPCWSTR lpFileName,
 IN DWORD dwDesiredAccess,
 IN DWORD dwShareMode,
 IN LPSECURITY_ATTRIBUTES lpSecurityAttributes,
 IN DWORD dwCreationDisposition,
 IN DWORD dwFlagsAndAttributes,
 IN HANDLE hTemplateFile
);
#ifdef UNICODE
#define CreateFile CreateFileW
#else
#define CreateFile CreateFileA
#endif // !UNICODE

Depending on whether the UNICODE macro is defined during compilation, or not, CreateFile
will either expand to CreateFileW or CreateFileA. Of course, the preprocessor will expand
every instance of CreateFile it finds, no matter where it is, as soon as <winbase.h> is
included. It’s easy to see where this leads to if there is a class with a member function named
CreateFile.

11

While this namespace pollution issue is worst on Windows – many candidates for good
method names are already names of Windows API functions – it can also happen on other
platforms. A good way to avoid this problem as much as possible is to use method names that
start with a lower case letter.

3.2 POSIX
The name POSIX, pronounced pahz-icks, is an acronym for Portable Operating System
Interface. It originally referred to IEEE Std 1003.1-1988, the first outcome of a
standardization effort started in 1985 by a bunch of Unix vendors, but nowadays refers to a
whole family of standards: IEEE Std 1003.n. To avoid ambiguities, the 1003.1 standard is
often referred to as POSIX.1. It describes the programming interface to the operating system,
and thus is the only standard interesting from a system programming point of view.
POSIX.1 is also an international standard of the International Organization for
Standardization, published as ISO/IEC 9945. In other words, the corresponding revisions of
IEEE Std 1003.1 and ISO/IEC 9945 are the same.
Over the years POSIX.1 underwent several revisions, in 1990 (incorporating ANSI C), 1992,
1996, 2001 and 2003. A few amendments were created as well, which were later on merged
back into the main text. Examples are POSIX.1b-1993 Realtime Extension, and POSIX.1c-
1995 Threads.
As implied by its name, POSIX does not describe the implementation of an operating system,
but rather the programming interfaces an operating system must provide to its applications.
Therefore, a POSIX compliant operating system need not have anything to do with the classic
Unix System V or BSD implementations. For example, Windows NT had a POSIX subsystem
(that later was removed with the release of Windows XP), and QNX, although technically not
a Unix system, is fully POSIX compliant.
Among other things, POSIX specifies the name, signature and semantics of well over 1000
functions, as well as the name and location of the corresponding C header files. It does not
distinguish between system calls and standard library functions, so implementations are free
to implement the functions in the way that best suits them.
The POSIX standard has been widely adopted by vendors of embedded/real-time operating
systems. Some of these operating systems offer native POSIX-compliant APIs, like QNX or
Integrity. Others, for example VxWorks, provide compatibility libraries that implement
POSIX interfaces on top of the native operating system APIs. Nevertheless, there are
operating systems without any support for POSIX.

3.3 An Object-Oriented Operating System API
For pure C development, the POSIX APIs may be sufficient as a portable interface to the
operating system, even if it means that a POSIX compatibility layer may need to be written
for some systems. In contrast, for C++ development, an object-oriented interface to the
operating system that uses C++ features to their full extent (classes, exception handling) is
desirable, as it significantly reduces the complexity of working with an operating system API,
in addition to acting as an abstraction layer that improves code portability.

3.3.1 Abstracting Operating System Facilities
As an example that shows how an operating system facility can be wrapped in a C++ class, a
Mutex class implementing a mutual-exclusion object or binary semaphore is used in the
remainder of this section. The Mutex class is straightforward and looks as follows:

12

class Mutex
{
public:
 Mutex();
 ~Mutex();
 void lock();
 void unlock();

private:
 Mutex(const Mutex&);
 Mutex& operator = (const Mutex&);
};

A typical usage of a Mutex is to implement a critical section:
static Mutex mtx;
mtx.lock();
// some code that needs to be in a critical section
mtx.unlock();

The code above has a problem: it is not exception safe. If an exception is thrown from within
the critical section, the mutex remains locked forever, leading to a hanging program the next
time the critical section is to be executed. The correct way to implement the critical section
thus would be:

static Mutex mtx;
mtx.lock();
try
{
 // some code that needs to be in a critical section
}
catch (...)
{
 mtx.unlock();
 throw;
}
mtx.unlock();

The additional error handling code does not look very nice – after all, C++ exceptions are
meant to reduce to amount of explicit error handling code. Furthermore, it is very easy to
forget a call to unlock(). A better solution is strongly desired. This is where the power of
C++ kicks in. A ScopedLock class can be easily implemented, that guarantees that a mutex is
always unlocked appropriately.

class ScopedLock
{
public:
 ScopedLock(Mutex& mutex): _mutex(mutex)
 {
 _mutex.lock();
 }
 ~ScopedLock()
 {
 _mutex.unlock();
 }

private:
 Mutex& _mutex;

 ScopedLock();
 ScopedLock(const ScopedLock&);
 ScopedLock& operator = (const ScopedLock&);
};

13

With the ScopedLock class, instead of the error-prone 12 lines above, the following elegant
code achieves the same result:

static Mutex mtx;
{
 ScopedLock lock(mtx);
 // some code that needs to be in a critical section
}

Putting the ScopedLock object into a block ensures that the mutex will always be locked upon
entering, and unlocked upon leaving the block, no matter whether the block is left regularly,
or as the consequence of throwing an exception.

3.3.2 Implementing an Abstraction Layer
The Mutex class must now be implemented for all the supported platforms. This leads to an
interesting problem. Different implementations of the same interface are needed for the
various platforms. How shall these different implementations be organized? First, a common
header file is needed that contains the definition of the Mutex class. However, the class
definition will not be the same for all platforms. This can be accounted for by using macros
and conditional compilation which, in turn, leads to hard readable and thus hard maintainable
code. Conditional compilation can also be used to pull in the correct class definition for the
respective platform from another header file. This approach is somewhat better, but still has
two drawbacks. First, there is no reference definition of the interface. One might someday put
additional methods into the class, but it is very easy to forget to put these into the
implementations for other platforms as well. Second, one might want to look at the class
definition to look up some information — the class definition is, after all, still the most
authoritative reference. Using this approach, one has to look for the class definition in a
platform specific header file, not in the common header file actually used in the source code.
C++ provides us with a facility that is the solution to our problem: private inheritance. If class
B is a private base class of class C, then only methods of C (and its friends) can access the
public and protected members of B. Subclasses of C or other unrelated classes cannot access
them. This is ideal for the intended purpose.
For every platform, a class MutexImp, having the interface shown in the following example, is
implemented:

class MutexImp
{
protected:
 MutexImp();
 ~MutexImp();
 void lockImp();
 void unlockImp();
};

All members of MutexImp are protected, so this class cannot be used on its own. It can,
however, be used as a base class for Mutex. Inheriting private from MutexImp ensures that no
one but Mutex gets access to the members of MutexImp. The definition and implementation of
Mutex therefore looks as follows:

class Mutex: private MutexImp
{
public:
 Mutex();
 ~Mutex();
 void lock();
 void unlock();

14

};

...

inline void Mutex::lock()
{
 lockImp();
}

inline void Mutex::unlock()
{
 unlockImp();
}

The lock() and unlock() methods are implemented as inline methods, to mitigate for the
additional indirection inducted by the call to the implementation method. It now only must be
made sure that the correct implementation of MutexImp for the platform gets included, using
conditional compilation.
An implementation of MutexImp for platforms supporting POSIX threads could be like this:

class MutexImp
{
protected:
 MutexImp();
 ~MutexImp();
 void lockImp();
 void unlockImp();

private:
 pthread_mutex_t _mutex;
};

MutexImp::MutexImp()
{
 if (pthread_mutex_init(&_mutex, 0))
 throw SystemException("cannot create mutex");
}

MutexImp::~MutexImp()
{
 pthread_mutex_destroy(&_mutex);
}

inline void MutexImp::lockImp()
{
 if (pthread_mutex_lock(&_mutex))
 throw SystemException("cannot lock mutex");
}

inline void MutexImp::unlockImp()
{
 if (pthread_mutex_unlock(&_mutex))
 throw SystemException("cannot unlock mutex");
}

3.4 Using Third-Party Class Libraries
There are class libraries available, both from open-source projects and commercial vendors,
that support cross-platform development. The C++ Portable Components, written by the
author of this paper, are just one example [2]. An exhaustive resource for finding such a
library is the Available C++ Libraries FAQ [3]. However, most of these libraries only target

15

Windows and Unix platforms, and support for embedded/real-time operating systems is
limited, if available at all. It most be noted that using such a library only brings one half the
way towards true cross-platform programming. The other half is a solid understanding of all
the C++ cross-platform programming issues, as discussed in this paper.

4 Interfacing Hardware
Using the object-oriented features of C++, hardware can be easily represented by classes. The
same technique that has been used for abstracting operating system facilities can be used for
abstracting hardware. Alternatively, public inheritance together with protected virtual member
functions can be used to implement different versions of devices with the same interface.

4.1 Input/Output Ports
The methods for accessing input/output ports are highly platform specific. Not even the
POSIX specification defines a standard API for this. At the lowest level, an I/O register can
be represented as a class. For example, using the private inheritance technique:

class IOReg16: private IOReg16Imp
{
public:
 IOReg16(UIntPtr addr);
 void set(UInt16 value);
 UInt16 get() const;
};

This, again, can be used as a building block for a higher-level abstraction, for example a
digital-to-analog converter (DAC):

class DAC
{
public:
 DAC(IOReg16& reg);
 void set(float voltage);
 const float MAX_VOLTAGE = 2.4;

private:
 IOReg16& _ioReg;
};

DAC::DAC(IOReg16& reg): _ioReg(reg)
{
}

inline void DAC::set(float voltage)
{
 _ioReg.set((UInt16) (voltage*0xFFFF/MAX_VOLTAGE));
}

4.2 Interrupts
Interrupt service routines (ISRs) can be written in C++, provided the RTOS has some basic
support for writing ISRs in C++ or C. If not, the use of assembly language or platform-
specific language extensions might be required to use C++ code in an ISR, due to
incompatible calling conventions. The code implementing an ISR should be as short as
possible. The non time-critical parts of handling an interrupt should be loaded off to a
separate thread. An event queue (implemented as a static ring buffer, since no memory can be
allocated in an ISR) can be used to pass data from the ISR to the handler thread. It is then

16

possible to write the code for the handler thread in a portable way. ISR code should be clearly
separated from the other, portable parts of a program, to ensure maintainability.

5 Conclusions
Designing and building portable software in C++ is not a trivial task. Doing it successfully
requires experience, as well as careful planning and extra thoughts when designing the
system. Nevertheless, portable software can be built quite successfully with C++. As a side
effect, software designed and implemented with portability in mind brings with it a cleaner
design and improved maintainability. The benefits of building C++ software in a portable way
can by far outweigh the additional effort required.

References
[1] Stroustrup, B., “A History of C++: 1979-1991”, in ACM SIGPLAN Notices, Volume

28, No. 3, 1993
[2] Obiltschnig, G., “The C++ Portable Components for Embedded Development”, 2005,

at http://www.appinf.com/poco/index.html
[3] N. Lokke, “Available C++ Libraries FAQ”, 2005, at

http://www.trumphurst.com/cpplibs/cpplibs.phtml

