

POCO Platform

Quick Start Guide
Version 0.2 (preliminary)

Purpose of This Document

This document guides developers interested in the Applied Informatics POCO Platform
through the first steps working with the POCO Platform C++ libraries and tools.

The document is targeted at developers and development/technical managers wanting to get an
overview of the functionality and features offered by the Applied Informatics POCO Platform.
Familiarity with the C++ programming language is assumed.

Validity of This Document

This document covers release 2009.1 and later releases of the Applied Informatics POCO
Platform.

Copyright, Trademarks, Disclaimer

Copyright © 2008-2009, Applied Informatics Software Engineering GmbH. All rights reserved.

All trademarks or registered marks in this document belong to their respective owners.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Applied Informatics. This document is provided "as is" without
warranty of any kind, either expressed or implied, including, but not limited to, the particular
purpose. Applied Informatics reserves the right to make improvements and/or changes to this
document or the products described herein at any time.

Table of Contents
1 Welcome ...4

2 An Overview of the POCO Platform..5
2.1 High-Level Overview 5
2.2 Libraries, Frameworks an d Tools 6
3 Setting Up The POCO Platform...9
3.1 Source Code Distribution Format 9
3.2 E xtern al Depen den cies 10
3.2.1 OpenSSL 11
3.2.2 ODBC 11
3.2.3 MySQL Client 11
3.2.4 Zeroconf (Avahi) 12
3.3 Buildin g on Win dows 13
3.4 Buildin g on U n ix/Lin ux 14
3.5 Frequen tly Asked Question s 14

Applied Informatics POCO Platform
Quick Start Guide 4/15

1 Welcome
Thank you for choosing the Applied Informatics POCO Platform for your
project and welcome to the powerful C++ libraries and tools of the POCO
Platform. This document will help you in getting a smooth ride while
installing and setting up the POCO Platform software, and going the first
steps with the C++ libraries and tools of the POCO Platform.

If at any point during the evaluation you have any questions or need support,
please contact us via email at support@appinf.com.

Applied Informatics POCO Platform
Quick Start Guide 5/15

2 An Overview of the POCO Platform
The POCO Platform consists of a number of C++ Libraries and tools (such
as code generators and other utilities) providing readily available building
blocks for C++ based applications targeting different operating system and
hardware platforms.

2.1 High-Level Overview

Figure 1 gives a high-level overview of the areas of functionality covered by
the POCO Platform. Please note that, depending on which packages you
have licensed, not all features described in the following may be available to
you.

Figure 1: High-level overview of the POCO Platform

At the core of the POCO Platform, the so-called Base Services offer platform
abstraction by providing uniform application programming interfaces (APIs)
for working with the filesystem, threads, processes, shared libraries and other
operating system resources. This allows it to create applications targeting
different operating systems in a write-once, compile-and-run everywhere
fashion. Also part of the Base Services are classes for working with XML,
implementations of various network protocols (sockets, HTTP server and
client, FTP, SMTP, POP3, SSL/TLS), libraries for accessing different SQL
database management systems in a uniform fashion and various utility classes
providing features such as logging or configuration data management.

Applied Informatics POCO Platform
Quick Start Guide 6/15

On top of the Base Services, a Component Services layer provides a runtime
system that allows the development and deployment of dynamic applications
that can be extended using a powerful plug-in mechanism based on so-called
bundles. Bundles combine executable code (shared libraries), configuration
data and other resources in a single file. The dynamic nature of this system
allows the creation of applications that can be extended and upgraded at
runtime – even when deployed on a device in the field.

Finally, the Network Services layer offers advanced networking features such
as remote objects and SOAP/WSDL web services, automatic network service
discovery, remote configuration of network devices based on the NETCONF
protocol, and support for rich browser-based user interfaces.

2.2 Libraries, Frameworks and Tools

Figure 2 shows the different C++ libraries that make up the POCO Platform.

Figure 2: Libraries and Tools of the POCO Platform

The heart of the POCO Platform is the Foun dation library. Among other
useful classes and frameworks, the Foundation library provides numerous
classes that shield the programmer from the underlying operating system
application programming interface (API), and thus enable true cross-
platform programming in a write once – compile anywhere sense. While
embedded development is still often a tightrope walk between high-level
abstractions – fostering maintainability and portability – and maximum code
efficiency, especially maintainability and code portability are becoming
increasingly important. After all, hardware platforms and operating systems

Applied Informatics POCO Platform
Quick Start Guide 7/15

change more frequently than the software systems that run on them. The
Foundation library includes a deliberately thin platform abstraction layer that
is extremely well suited for embedded platforms, putting only very little
overhead between your software and the target hardware.

Built upon the Foundation library are various libraries providing higher-level
functions. The N et library provides implementations of various network
protocols and servers like HTTP, FTP, SMTP and others. The N etSSL
library adds SSL/TLS support to the Net library. The XM L library provides an
XML parser and writer, supporting the industry-standard SAX2 (Simple API
for XML, Version 21) and DOM (Document Object Model2) interface
specifications. The Fast In foset library provides a C++ implementation of
the ITU-T Rec. X.891 and ISO/IEC 24824-1 standards for a binary
representation of the XML information set — the contents of an XML
document, based on the SAX2 and DOM interfaces from the XML library.
The U til library offers classes for processing configuration files and
command line arguments, as well as a framework for creating server
applications, implemented as Unix daemons or Windows services. Finally,
the Data library provides uniform access to various SQL databases. For
embedded applications, the SQLite database engine is supported. For
enterprise applications, ODBC and MySQL are directly supported.

The Remotin g toolkit makes it easy to build distributed applications in
C++. Remoting consists of a code generator (RemoteGen), a runtime library,
as well as libraries implementing transport protocols. The Binary transport
protocol provides an efficient proprietary transport protocol for
communication between Remoting-based C++ applications. This makes the
Binary transport well-suited for implementing high-level, object-based inter-
process communication (IPC). The SoapLite transport protocol provides
SOAP 1.1 and WSDL 1.1 support and allows to build web services in C++
that can be invoked from Java or .NET based applications.

The Open Service Platform (OSP) is a collection of C++ class libraries
and tools for building dynamically extensible applications based on a
powerful plug-in and services model. OSP enables applications that can be
dynamically upgraded with new features and managed remotely, using web-
based or console-based administration facilities. OSP implements a dynamic
module system for C++ applications, similar in concept to the OSGi
technology3 for Java. At the core of OSP lies a powerful software component
model based on the concept of bundles. A bundle is a deployable entity,
consisting of both executable code and the necessary configuration, data and
resource files required for running the code. Bundles extend the functionality
of an application by providing features to other bundles, end-user
functionality or web services. A central Service Registry allows bundles to
discover the services provided by other bundles. Bundles can be added,
updated, started, stopped or removed from an application without the need
to terminate and restart the application. OSP consists of a runtime library,
various bundles implementing standard services, as well as a tool for creating

1 http://www.saxproject.org/
2 http://www.w3.org/DOM/
3 OSGi is a trademark or a registered trademark of the OSGi Alliance in the United States, other countries, or both.
See http://www.osgi.org for more information on the OSGi Service Platform.

Applied Informatics POCO Platform
Quick Start Guide 8/15

bundles. Also included are bundles implementing both a web-based and a
console-based administration interface.

The POCO Platform Libraries are entirely based on the C++ standard library,
including the Standard Template Library (STL). Therefore, unlike many
other libraries, the POCO Platform does not bring in its own string,
collection and stream classes, which eases their integration into your own
projects.

The POCO Platform consistently uses C++ exceptions for error handling,
thus making life easier for developers. Without exceptions, error handling is
often done insufficiently (for example, function return values denoting
success or failure are often ignored), leading to hard-to-track-down bugs.
With modern C++ compilers, the runtime overhead caused by exception
handling is minimal, and the advantages of exception handling far outweigh
its costs. Consequent use of exceptions leads to more stable and better
maintainable code.

Applied Informatics POCO Platform
Quick Start Guide 9/15

3 Setting Up The POCO Platform
The C++ libraries and tools of the POCO Platform are delivered in full
source code. This means that you have to build the POCO Platform C++
libraries and tools before you can use them the first time.

3.1 Source Code Distribution Format

The source code for the POCO Platform is delivered in a ZIP file for
Windows users and/or in a compressed TAR file (.tar.gz or .tar.bz2) for
Unix/Linux users. Both files contain the same files, the only difference is
that all text files in the ZIP files have line endings suitable for Windows (CR-
LF), while the text files in the TAR file have line endings suitable for
Unix/Linux (LF only).

All libraries and tools of the POCO Platform follow a common convention
for the directory layout. This directory layout is shown in Figure 3.

Applied Informatics POCO Platform
Quick Start Guide 10/15

build/ the build system for Unix and utility scripts
 config/ build configurations for various Unix platforms
 rules/ common make rules for all platforms
 scripts/ build and utility scripts

bin/ all executables (DLLs on Windows)

doc/ additional documentation

lib/ all libraries (import libraries on Windows)

CppUnit/ project and make files for CppUnit
 (the unit testing framework used by POCO)
 doc/ additional documentation for CppUnit
 include/
 CppUnit/ header files for CppUnit
 src/ implementation files (.cpp) for CppUnit
 WinTestRunner/ Windows GUI for CppUnit
 include/ header files for WinTestRunner
 src/ implementation files for WinTestRunner
 res/ resource files for WinTestRunner

Foundation/ project and make files for Foundation library
 include/
 Poco/ header files for the Foundation library
 src/ implementation files (.cpp) for Foundation lib
 testsuite/ project and make files for Foundation testsuite
 src/ implementation files for Foundation testsuite
 bin/ test suite executables
 samples/ sample applications for the Foundation library

XML/ project and make/build files for the XML library
 include/
 Poco/
 XML/ header files for the XML library
 src/ implementation files (.cpp) for the XML library
 testsuite/ project and make files for XML testsuite
 src/ implementation files for the XML testsuite
 bin/ test suite executables
 samples/ sample applications for the XML library

Figure 3: General directory layout for the POCO Platform source code distribution

3.2 External Dependencies

Some parts of the POCO Platform require third-party open source software
being installed before they can be built. For example, the NetSSL library
requires OpenSSL4, ODBC support in the Data package requires ODBC
header files and libraries and the MySQL support in the Data packages
requires the MySQL client header files and libraries.

4 http://www.openssl.org/

Applied Informatics POCO Platform
Quick Start Guide 11/15

3.2.1 OpenSSL

Most Unix/Linux systems (including Mac OS X) already have OpenSSL
preinstalled, or OpenSSL can be easily installed using the system’s package
management facility. For example, on Ubuntu (or other Debian-based Linux
distributions) you can type

$ sudo apt-get install openssl libssl-dev

to install the necessary packages.

If your system does not have OpenSSL, please get it from
http://www.openssl.org/ or another source. You do not have to build
OpenSSL yourself – a binary distribution is fine.

The easiest way to install OpenSSL on Windows is to use a binary (prebuilt)
release, for example the one from Shining Light Productions5 that comes
with a Windows installer. Depending on where you have installed the
OpenSSL libraries, you might have to edit the build script (buildwin.cmd), or
add the necessary paths to the INCLUDE and LIB environment variables, so
that the OpenSSL header files and libraries can be found by the Visual C++
compiler and linker, respectively.

3.2.2 ODBC

The Data library requires ODBC support on your system if you want to build
the ODBC connector (which is the default). On Windows platforms, ODBC
should be readily available if you have the Windows SDK installed. On
Unix/Linux platforms, you can use iODBC6 (preinstalled on Mac OS X) or
unixODBC7. On Linux, use your distribution’s package management system
to install the necessary libraries and header files. For example, on Ubuntu,
type

sudo apt-get install libiodbc2 libiodbc2-dev

to install the iODBC library and header files.

The Data/ODBC and Data/MySQL Makefiles will search for the ODBC and
MySQL headers and libraries in various places. Nevertheless, the Makefiles
may not be able to find the headers and libraries. In this case, please edit the
Makefile in Data/ODBC and/or Data/MySQL accordingly.

3.2.3 MySQL Client

The Data library requires the MySQL8 client libraries and header files if you
want to build the MySQL connector (which is the default). On Windows

5 http://www.slproweb.com/products/Win32OpenSSL.html
6 http://www.iodbc.org/
7 http://www.unixodbc.org/
8 http://dev.mysql.com/

Applied Informatics POCO Platform
Quick Start Guide 12/15

platforms, use the MySQL client installer to install the necessary files. On
Unix/Linux platforms, use the package management system of your choice
to install the necessary files. Alternatively, you can of course build MySQL
yourself from source.

3.2.4 Zeroconf (Avahi)

The Zeroconf library requires either the open source Zeroconf
implementation from Apple, or, alternatively, Avahi (Linux only) to work.

For Windows, please download the Bonjour software and SDK for Windows
(Bonjour for Windows 1.0.3, as well as Bonjour SDK for Windows 1.0.3, or a
newer release, if one is available) from
http://developer.apple.com/networking/bonjour/download/. Both the software
and the SDK comes as a Windows installer, both of which you should run.

For Linux, please download the Bonjour Source Code v107.6 (or a later
release) from the website given above. Follow the following instructions to
build and install Bonjour on Linux.

Download mDNSResponder-107.6.tar.gz

[guenter@localhost ~]$ wget http://www.opensource.apple.com/darwinsource/
tarballs/other/mDNSResponder-107.6.tar.gz
...
[guenter@localhost ~]$ gunzip mDNSResponder-107.6.tar.gz
[guenter@localhost ~]$ tar –xf mDNSResponder-107.6.tar
[guenter@localhost ~]$ cd mDNSResponder-107.6
[guenter@localhost mDNSResponder-107.6]$ cd mDNSPosix

If you are using GCC 4.0 or newer, you have to modify the Makefile prior
to compiling the software. Open the Makefile in the mDNSPosix
directory in your favorite editor, and locate the following line (for 107.6, this
is line 270):

LD = ld –shared

and change that line to

LD = gcc –shared

Then build the libraries and applications, and install them (as superuser):

[guenter@localhost mDNSResponder-107.6]$ make os=linux
[guenter@localhost mDNSResponder-107.6]$ sudo make os=linux install

Alternatively, if you are going to use the Zeroconf_Avahi library, install the
development package for Avahi using your Linux distribution’s package
management tools.

Applied Informatics POCO Platform
Quick Start Guide 13/15

3.3 Building on Windows

For use on Windows, using Microsoft Visual C++ (.NET 2003 or newer), the
POCO Platform source code comes in a ZIP file. Unpack the contents of the
ZIP file to a directory of your choice, but please make sure that the path to
the POCO installation directory does not contain any whitespace characters.
While building the Foundation library, the Microsoft Message Compiler is
invoked, and this tool unfortunately does not support path names
containing white space characters.

Microsoft Visual Studio 7.1 (2003), 8.0 (2005) or 9.0 (2008) is required to
build the POCO Platform on Windows platforms. Solution and project files
for all three versions are included.

Please make sure that the bin directory that will contain the POCO
Platform dynamic link libraries and executables is in your systems
executable search path (the PATH environment variable) before starting
the build. For example, if you have extracted the POCO Platform
sources to C:\POCO, make sure that the PATH environment variable
contains C:\POCO\bin, otherwise certain projects will fail to build.

You can either build each project separately from within Visual Studio (Build-
>Batch Build->Select All;Rebuild) or build everything from the command
line. To build from the command line, start the Visual Studio .NET 2003 (or
2005/2008) Command Prompt and change to the directory where you have
extracted the POCO Platform sources. Then, simply start the buildwin.cmd
script and pass as argument the version of visual studio (71, 80 or 90). You
can customize what is being built by buildwin.cmd by passing appropriate
command line arguments to it. Call buildwin.cmd without arguments to see
what is available. Per default, buildwin.cmd will attempt to build all projects
in all configurations (shared_debug, shared_release, static_debug and
static_release). However, not all project files contain build configurations for
static_debug and static_release. An error message will be displayed while
attempting to build these configurations. However, everything else will be
built.

To disable certain components (e.g., NetSSL_OpenSSL or Data/MySQL)
from the build, edit the file named "components" and remove the respective
lines.

Certain libraries, like NetSSL_OpenSSL, Crypto or Data/MySQL have
dependencies to other libraries. Since the build script does not know where
to find the necessary header files and import libraries, you have to either add
the header file paths to the INCLUDE environment variable and the library
path to the LIB environment variable, or you'll have to edit the buildwin.cmd
script, where these environment variables can be set as well. Alternatively,
you can also modify the global header file and library search paths in Visual
Studio.

Applied Informatics POCO Platform
Quick Start Guide 14/15

3.4 Building on Unix/Linux

For building on Unix platforms, the POCO C++ Libraries come with their
own build system. The build system is based on GNU Make 3.80, with the
help from a few shell scripts. If you do not have GNU Make 3.80 (or later)
installed on your machine, you will need to install it using your Linux
distribution’s package management system, or download it from
http://directory.fsf.org/devel/build/make.html, build and install it prior to
building the POCO Platform.

You can check the version of GNU Make installed on your system with

$ gmake –version

or

$ make --version

Once you have GNU Make up and running, the rest is quite simple. To
extract the sources and build all libraries, testsuites and samples, simply

$ gunzip poco-X.Y.tar.gz
$ tar -xf poco-X.Y.tar.gz
$ cd poco-X.Y.tar.gz
$./configure
$ make -s

See the configure script source for a list of possible options.

For starters, we recommend --no-tests and --no-samples, to reduce build
times. On a multicore or multiprocessor machine, use parallel makes to speed
up the build (make -j4).

You can omit certain components from the build. For example, you might
want to omit Data/ODBC or Data/MySQL if you do not have the
corresponding third-party libraries (iodbc or unixodbc, mysqlclient) installed
on your system. To do this, use the --omit argument to configure:

$./configure --omit=Data/ODBC,Data/MySQL

3.5 Frequently Asked Questions

Q: Under linux what is the command to undo a "configure" session to get back
to the initial state?

A: All that configure does is create a config.make file in the current directory.
To undo a configure, you can just delete this file. Or simply run configure
again, with different arguments.

Applied Informatics POCO Platform
Quick Start Guide 15/15

Q: What does a "make install" actually do? I notice the built libraries were
copied to /usr/local/lib and the includes under /usr/local/include. I also noticed
the sample bundles went under bin. I take it I need to remove the ones I do
not want. What else went into bin?

A: make install creates a directory hierarchy (include, lib, bin) under <prefix>
(/usr/local, /opt/poco, etc.) and copies header files, executables and libraries
there. That's all. Tools like bundle, cpspc (PageCompiler), and RemoteGen are
also supposed to go into bin.

However, I wouldn't use install, as it has some drawbacks:

• you lose the connection between libraries and source code, which
makes debugging harder

• it makes it harder to rebuild POCO or parts of it in case you have to
(e.g., due to local modifications or patches from us)

install was mainly meant to be a help for people creating packages for
POCO using various packaging systems (e.g., RPM, dpkg, ports, etc.). I
wouldn't use it to install POCO for development purposes.

Q: Where do you recommend the distribution/build directory be
installed/moved for multiple developers to reference on the same server?

A: Actually, I would treat POCO as just another source component in your
project's source tree. This also implies that you put the POCO sources into
your configuration management system. Given proper configuration of your
SCM system (line endings), you can then use the same source tree for
Windows and Linux. A project organization that has worked well for us and
some of our customers is the following:

/YourProject/
 poco/
 Foundation/
 include/
 src/
 XML/
 lib/
 ...
 YourLibrary1/
 include/
 src/
 ...
 YourLibrary2/
 include/
 src/
 ...
 YourApplication1/
 include/...
 src/...
 lib/
 bin/
 ...

